ترغب بنشر مسار تعليمي؟ اضغط هنا

There are no exotic ladder surfaces

54   0   0.0 ( 0 )
 نشر من قبل Ara Basmajian
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is an open problem to provide a characterization of quasiconformally homogeneous Riemann surfaces. We show that given the current literature, this problem can be broken into four open cases with respect to the topology of the underlying surface. The main result is a characterization in one of the these open cases; in particular, we prove that every quasiconformally homogeneous ladder surface is quasiconformally equivalent to a regular cover of a closed surface (or, in other words, there are no exotic ladder surfaces).



قيم البحث

اقرأ أيضاً

281 - Ara Basmajian , Hugo Parlier , 2021
We construct a quasiconformally homogeneous hyperbolic Riemann surface-other than the hyperbolic plane-that does not admit a bounded pants decomposition. Also, given a connected orientable topological surface of infinite type with compact boundary co mponents, we construct a complete hyperbolic metric on the surface that has bounded geometry but does not admit a bounded pants decomposition.
181 - Tarik Aougab , Priyam Patel , 2020
Given a 2-manifold, a fundamental question to ask is which groups can be realized as the isometry group of a Riemannan metric of constant curvature on the manifold. In this paper, we give a nearly complete classification of such groups for infinite-g enus 2-manifolds with no planar ends. Surprisingly, we show there is an uncountable class of such 2-manifolds where every countable group can be realized as an isometry group (namely, those with self-similar end spaces). We apply this result to obtain obstructions to standard group theoretic properties for the groups of homeomorphisms, diffeomorphisms, and the mapping class groups of such 2-manifolds. For example, none of these groups satisfy the Tits Alternative; are coherent; are linear; are cyclically or linearly orderable; or are residually finite. As a second application, we give an algebraic rigidity result for mapping class groups.
We discuss symmetry breaking quantum phase transitions on the oft studied Bethe lattice in the context of the ferromagnetic scalar spherical model or, equivalently, the infinite $N_f$ limit of ferromagnetic models with $O(N_f)$ symmetry. We show that the approach to quantum criticality is characterized by the vanishing of a gap to just the global modes so that {it all} local correlation functions continue to exhibit massive behavior. This behavior persists into the broken symmetry phase even as the order parameter develops an expectation value and thus there are no massless Goldstone bosons in the spectrum. We relate this feature to a spectral property of the graph Laplacian shared by the set of `expander graphs, and argue that our results apply to symmetry breaking transitions on such graphs quite generally.
A Riemann surface $X$ is said to be of emph{parabolic type} if it supports a Greens function. Equivalently, the geodesic flow on the unit tangent of $X$ is ergodic. Given a Riemann surface $X$ of arbitrary topological type and a hyperbolic pants deco mposition of $X$ we obtain sufficient conditions for parabolicity of $X$ in terms of the Fenchel-Nielsen parameters of the decomposition. In particular, we initiate the study of the effect of twist parameters on parabolicity. A key ingredient in our work is the notion of textit{non standard half-collar} about a hyperbolic geodesic. We show that the modulus of such a half-collar is much larger than the modulus of a standard half-collar as the hyperbolic length of the core geodesic tends to infinity. Moreover, the modulus of the annulus obtained by gluing two non standard half-collars depends on the twist parameter, unlike in the case of standard collars. Our results are sharp in many cases. For instance, for zero-twist flute surfaces as well as half-twist flute surfaces with concave sequences of lengths our results provide a complete characterization of parabolicity in terms of the length parameters. It follows that parabolicity is equivalent to completeness in these cases. Applications to other topological types such as surfaces with infinite genus and one end (a.k.a. the infinite Loch-Ness monster), the ladder surface, Abelian covers of compact surfaces are also studied.
159 - Paulo Tirao , Sonia Vera 2017
We prove that there are no rigid complex filiform Lie algebras in the variety of (filiform) Lie algebras of dimension less than or equal to 11. More precisely we show that in any Euclidean neighborhood of a filiform Lie bracket (of low dimension), th ere is a non-isomorphic filiform Lie bracket. This follows by constructing non trivial linear deformations in a Zariski open dense set of the variety of filiform Lie algebras of dimension 9, 10 and 11. (In lower dimensions this is well known.)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا