ﻻ يوجد ملخص باللغة العربية
Pure spin current has transfigured the energy-efficient spintronic devices and it has the salient characteristic of transport of the spin angular momentum. Spin pumping is a potent method to generate pure spin current and for its increased efficiency high effective spin-mixing conductance (Geff) and interfacial spin transparency (T) are essential. Here, a giant T is reported in Sub/W(t)/Co20Fe60B20(d)/SiO2(2 nm) heterostructures in beta-tungsten (beta-W) phase by employing all-optical time-resolved magneto-optical Kerr effect technique. From the variation of Gilbert damping with W and CoFeB thicknesses, the spin diffusion length of W and spin-mixing conductances are extracted. Subsequently, T is derived as 0.81 pm 0.03 for the beta-W/CoFeB interface. A sharp variation of Geff and T with W thickness is observed in consonance with the thickness-dependent structural phase transition and resistivity of W. The spin memory loss and two-magnon scattering effects are found to have negligible contributions to damping modulation as opposed to spin pumping effect which is reconfirmed from the invariance of damping with Cu spacer layer thickness inserted between W and CoFeB. The observation of giant interfacial spin transparency and its strong dependence on crystal structures of W will be important for pure spin current based spin-orbitronic devices.
Studies of magnetization dynamics have incessantly facilitated the discovery of fundamentally novel physical phenomena, making steady headway in the development of magnetic and spintronics devices. The dynamics can be induced and detected electricall
The rich phase diagram of bulk Pr$_{1-x}$Ca$_{x}$MnO$_3$ resulting in a high tunability of physical properties gave rise to various studies related to fundamental research as well as prospective applications of the material. Importantly, as a consequ
Thin films of perovskite Ruthenates of the general formula ARuO3 (A = Ca and Sr) are versatile electrical conductors for viable oxide electronics. They are also scientifically intriguing, as they exhibit non-trivial electromagnetic ground states depe
Magnetic skyrmions are topologically stable spin swirling particle like entities which are appealing for next generation spintronic devices. The expected low critical current density for the motion of skyrmions makes them potential candidates for fut
Voltage control of magnetism and spintronics have been highly desirable, but rarely realized. In this work, we show voltage-controlled spin-orbit torque (SOT) switching in W/CoFeB/MgO films with perpendicular magnetic anisotropy (PMA) with voltage ad