ﻻ يوجد ملخص باللغة العربية
We study the description of nucleons and diquarks in the presence of a uniform strong magnetic field within the framework of the two-flavor Nambu-Jona--Lasinio (NJL) model. Diquarks are constructed through the resummation of quark loop chains using the random phase approximation, while nucleons are treated as bound quark-diquark states described by a relativistic Fadeev equation, using the static approximation for quark exchange interactions. For charged particles, analytical calculations are performed using the Ritus eigenfunction method, which properly takes into account the breakdown of translation invariance that arises from the presence of Schwinger phases. Within this scheme, for definite model parametrizations we obtain numerical predictions for diquark and nucleon masses, which are compared with Chiral Perturbation Theory and Lattice QCD results. In addition, numerical estimations for nucleon magnetic moments are obtained.
The behavior of charged pion masses in the presence of a static uniform magnetic field is studied in the framework of the two-flavor NJL model, using a magnetic field-independent regularization scheme. Analytical calculations are carried out employin
In the framework of the Nambu--Jona-Lasino (NJL) model, we study the effect of an intense external uniform magnetic field on neutral and charged pion masses and decay form factors. In particular, the treatment of charged pions is carried out on the b
The behavior of charged and neutral pion masses in the presence of a static uniform magnetic field is studied in the framework of the two-flavor Nambu-Jona-Lasinio (NJL) model. Analytical calculations are carried out employing the Ritus eigenfunction
In this thesis is studied three of the fundamental properties of clusters of matter made of quarks u, d and s called strangelets: the energy per baryon, the radius and the electric charge, all in the presence of intense magnetic fields and finite tem
We present a path-integral hadronization for doubly heavy baryons. The two heavy quarks in the baryon are approximated as a scalar or axial-vector diquark described by a heavy diquark effective theory. The gluon dynamics are represented by a NJL-Mode