ﻻ يوجد ملخص باللغة العربية
We determine the diffusion length of excess carriers in GaN by spatially resolved cathodoluminescence spectroscopy utilizing a single quantum well as carrier collector or carrier sink. Monochromatic intensity profiles across the quantum well are recorded for temperatures between 10 and 300 K. A classical diffusion model accounts for the profiles acquired between 120 and 300 K, while for temperatures lower than 120 K, a quantum capture process has to be taken into account in addition. Combining the diffusion length extracted from these profiles and the effective carrier lifetime measured by time-resolved photoluminescence experiments, we deduce the carrier diffusivity as a function of temperature. The experimental values are found to be close to theoretical ones for the ambipolar diffusivity of free carriers limited only by intrinsic phonon scattering. This agreement is shown to be fortuitous. The high diffusivity at low temperatures instead originates from an increasing participation of excitons in the diffusion process.
The determination of the carrier diffusion length of semiconductors such as GaN and GaAs by cathodoluminescence imaging requires accurate knowledge about the spatial distribution of generated carriers. To obtain the lateral distribution of generated
We investigate the impact of threading dislocations with an edge component (a or a+c-type) on carrier recombination and diffusion in GaN(0001) layers close to the surface as well as in the bulk. To this end, we utilize cathodoluminescence imaging of
We investigate, both theoretically and experimentally, the drift, diffusion, and recombination of excitons in the strain field of an edge threading dislocation intersecting the GaN{0001} surface. We calculate and measure hyperspectral cathodoluminesc
The strain field of a dislocation emerging at a free surface is partially relaxed to ensure stress free boundary conditions. We show that this relaxation strain at the outcrop of edge threading dislocations in GaN{0001} gives rise to a piezoelectric
The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we