ﻻ يوجد ملخص باللغة العربية
In their continuous growth and penetration into new markets, Field Programmable Gate Arrays (FPGAs) have recently made their way into hardware acceleration of machine learning among other specialized compute-intensive services in cloud data centers, such as Amazon and Microsoft. To further maximize their utilization in the cloud, several academic works propose the spatial multi-tenant deployment model, where the FPGA fabric is simultaneously shared among mutually mistrusting clients. This is enabled by leveraging the partial reconfiguration property of FPGAs, which allows to split the FPGA fabric into several logically isolated regions and reconfigure the functionality of each region independently at runtime. In this paper, we survey industrial and academic deployment models of multi-tenant FPGAs in the cloud computing settings, and highlight their different adversary models and security guarantees, while shedding light on their fundamental shortcomings from a security standpoint. We further survey and classify existing academic works that demonstrate a new class of remotely exploitable physical attacks on multi-tenant FPGA devices, where these attacks are launched remotely by malicious clients sharing physical resources with victim users. Through investigating the problem of end-to-end multi-tenant FPGA deployment more comprehensively, we reveal how these attacks actually represent only one dimension of the problem, while various open security and privacy challenges remain unaddressed. We conclude with our insights and a call for future research to tackle these challenges.
With the wide use of Automatic Speech Recognition (ASR) in applications such as human machine interaction, simultaneous interpretation, audio transcription, etc., its security protection becomes increasingly important. Although recent studies have br
FPGAs are now used in public clouds to accelerate a wide range of applications, including many that operate on sensitive data such as financial and medical records. We present ShEF, a trusted execution environment (TEE) for cloud-based reconfigurable
Cloud computing is a new computing paradigm which allows sharing of resources on remote server such as hardware, network, storage using internet and provides the way through which application, computing power, computing infrastructure can be delivere
This paper embodies the usage of Big Data in Healthcare. It is important to note that big data in terms of Architecture and implementation might be or has already or will continue to assist the continuous growth in the field of healthcare. The main i
Sixth-generation (6G) mobile networks will have to cope with diverse threats on a space-air-ground integrated network environment, novel technologies, and an accessible user information explosion. However, for now, security and privacy issues for 6G