ﻻ يوجد ملخص باللغة العربية
Existing salient instance detection (SID) methods typically learn from pixel-level annotated datasets. In this paper, we present the first weakly-supervised approach to the SID problem. Although weak supervision has been considered in general saliency detection, it is mainly based on using class labels for object localization. However, it is non-trivial to use only class labels to learn instance-aware saliency information, as salient instances with high semantic affinities may not be easily separated by the labels. We note that subitizing information provides an instant judgement on the number of salient items, which naturally relates to detecting salient instances and may help separate instances of the same class while grouping different parts of the same instance. Inspired by this insight, we propose to use class and subitizing labels as weak supervision for the SID problem. We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids. This complementary information is further fused to produce salient instance maps. We conduct extensive experiments to demonstrate that the proposed method plays favorably against carefully designed baseline methods adapted from related tasks.
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we pr
Salient object detection aims at detecting the most visually distinct objects and producing the corresponding masks. As the cost of pixel-level annotations is high, image tags are usually used as weak supervisions. However, an image tag can only be u
Sparse labels have been attracting much attention in recent years. However, the performance gap between weakly supervised and fully supervised salient object detection methods is huge, and most previous weakly supervised works adopt complex training
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations. Despite of the success of previous works, explorations on an effective training strategy for the saliency network and accurate matches be
Weakly-supervised instance segmentation, which could greatly save labor and time cost of pixel mask annotation, has attracted increasing attention in recent years. The commonly used pipeline firstly utilizes conventional image segmentation methods to