ترغب بنشر مسار تعليمي؟ اضغط هنا

Grow-Push-Prune: aligning deep discriminants for effective structural network compression

102   0   0.0 ( 0 )
 نشر من قبل Qing Tian
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of todays popular deep architectures are hand-engineered to be generalists. However, this design procedure usually leads to massive redundant, useless, or even harmful features for specific tasks. Unnecessarily high complexities render deep nets impractical for many real-world applications, especially those without powerful GPU support. In this paper, we attempt to derive task-dependent compact models from a deep discriminant analysis perspective. We propose an iterative and proactive approach for classification tasks which alternates between (1) a pushing step, with an objective to simultaneously maximize class separation, penalize co-variances, and push deep discriminants into alignment with a compact set of neurons, and (2) a pruning step, which discards less useful or even interfering neurons. Deconvolution is adopted to reverse unimportant filters effects and recover useful contributing sources. A simple network growing strategy based on the basic Inception module is proposed for challenging tasks requiring larger capacity than what the base net can offer. Experiments on the MNIST, CIFAR10, and ImageNet datasets demonstrate our approachs efficacy. On ImageNet, by pushing and pruning our grown Inception-88 model, we achieve more accurate models than Inception nets generated during growing, residual nets, and popular compact nets at similar sizes. We also show that our grown Inception nets (without hard-coded dimension alignment) clearly outperform residual nets of similar complexities.



قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) are effective in solving many real-world problems. Larger DNN models usually exhibit better quality (e.g., accuracy) but their excessive computation results in long training and inference time. Model sparsification can red uce the computation and memory cost while maintaining model quality. Most existing sparsification algorithms unidirectionally remove weights, while others randomly or greedily explore a small subset of weights in each layer. The inefficiency of the algorithms reduces the achievable sparsity level. In addition, many algorithms still require pre-trained dense models and thus suffer from large memory footprint and long training time. In this paper, we propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models. It addresses the shortcomings of the previous works by repeatedly growing a subset of layers to dense and then pruning back to sparse after some training. Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks, such as image classification, objective detection, 3D object part segmentation, and translation. They also outperform other state-of-the-art (SOTA) pruning methods, including pruning from pre-trained dense models. As an example, a 90% sparse ResNet-50 obtained via GaP achieves 77.9% top-1 accuracy on ImageNet, improving the SOTA results by 1.5%.
In recent years, deep neural networks have achieved great success in the field of computer vision. However, it is still a big challenge to deploy these deep models on resource-constrained embedded devices such as mobile robots, smart phones and so on . Therefore, network compression for such platforms is a reasonable solution to reduce memory consumption and computation complexity. In this paper, a novel channel pruning method based on genetic algorithm is proposed to compress very deep Convolution Neural Networks (CNNs). Firstly, a pre-trained CNN model is pruned layer by layer according to the sensitivity of each layer. After that, the pruned model is fine-tuned based on knowledge distillation framework. These two improvements significantly decrease the model redundancy with less accuracy drop. Channel selection is a combinatorial optimization problem that has exponential solution space. In order to accelerate the selection process, the proposed method formulates it as a search problem, which can be solved efficiently by genetic algorithm. Meanwhile, a two-step approximation fitness function is designed to further improve the efficiency of genetic process. The proposed method has been verified on three benchmark datasets with two popular CNN models: VGGNet and ResNet. On the CIFAR-100 and ImageNet datasets, our approach outperforms several state-of-the-art methods. On the CIFAR-10 and SVHN datasets, the pruned VGGNet achieves better performance than the original model with 8 times parameters compression and 3 times FLOPs reduction.
Despite their prevalence, deep networks are poorly understood. This is due, at least in part, to their highly parameterized nature. As such, while certain structures have been found to work better than others, the significance of a models unique stru cture, or the importance of a given layer, and how these translate to overall accuracy, remains unclear. In this paper, we analyze these properties of deep neural networks via a process we term deep net triage. Like medical triage---the assessment of the importance of various wounds---we assess the importance of layers in a neural network, or as we call it, their criticality. We do this by applying structural compression, whereby we reduce a block of layers to a single layer. After compressing a set of layers, we apply a combination of initialization and training schemes, and look at network accuracy, convergence, and the layers learned filters to assess the criticality of the layer. We apply this analysis across four data sets of varying complexity. We find that the accuracy of the model does not depend on which layer was compressed; that accuracy can be recovered or exceeded after compression by fine-tuning across the entire model; and, lastly, that Knowledge Distillation can be used to hasten convergence of a compressed network, but constrains the accuracy attainable to that of the base model.
Network compression has been widely studied since it is able to reduce the memory and computation cost during inference. However, previous methods seldom deal with complicated structures like residual connections, group/depth-wise convolution and fea ture pyramid network, where channels of multiple layers are coupled and need to be pruned simultaneously. In this paper, we present a general channel pruning approach that can be applied to various complicated structures. Particularly, we propose a layer grouping algorithm to find coupled channels automatically. Then we derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels. Moreover, we find that inference speedup on GPUs is more correlated with the reduction of memory rather than FLOPs, and thus we employ the memory reduction of each channel to normalize the importance. Our method can be used to prune any structures including those with coupled channels. We conduct extensive experiments on various backbones, including the classic ResNet and ResNeXt, mobile-friendly MobileNetV2, and the NAS-based RegNet, both on image classification and object detection which is under-explored. Experimental results validate that our method can effectively prune sophisticated networks, boosting inference speed without sacrificing accuracy.
Deep Neural Networks trained as image auto-encoders have recently emerged as a promising direction for advancing the state-of-the-art in image compression. The key challenge in learning such networks is twofold: To deal with quantization, and to cont rol the trade-off between reconstruction error (distortion) and entropy (rate) of the latent image representation. In this paper, we focus on the latter challenge and propose a new technique to navigate the rate-distortion trade-off for an image compression auto-encoder. The main idea is to directly model the entropy of the latent representation by using a context model: A 3D-CNN which learns a conditional probability model of the latent distribution of the auto-encoder. During training, the auto-encoder makes use of the context model to estimate the entropy of its representation, and the context model is concurrently updated to learn the dependencies between the symbols in the latent representation. Our experiments show that this approach, when measured in MS-SSIM, yields a state-of-the-art image compression system based on a simple convolutional auto-encoder.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا