ترغب بنشر مسار تعليمي؟ اضغط هنا

Focal to bilateral tonic-clonic seizures are associated with widespread network abnormality in temporal lobe epilepsy

101   0   0.0 ( 0 )
 نشر من قبل Nishant Sinha
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Objective: To identify if whole-brain structural network alterations in patients with temporal lobe epilepsy (TLE) and focal to bilateral tonic-clonic seizures (FBTCS) differ from alterations in patients without FBTCS. Methods: We dichotomized a cohort of 83 drug-resistant patients with TLE into those with and without FBTCS and compared each group to 29 healthy controls. For each subject, we used diffusion MRI to construct whole-brain structural networks. First, we measured the extent of alterations by performing FBTCS-negative (FBTCS-) versus control and FBTCS-positive (FBTCS+) versus control comparisons, thereby delineating altered sub-networks of the whole-brain structural network. Second, by standardising networks of each patient using control networks, we measured the subject-specific abnormality at every brain region in the network, thereby quantifying the spatial localisation and the amount of abnormality in every patient. Results: Both FBTCS+ and FBTCS- patient groups had altered sub-networks with reduced fractional anisotropy (FA) and increased mean diffusivity (MD) compared to controls. The altered subnetwork in FBTCS+ patients was more widespread than in FBTCS- patients (441 connections altered at t>3, p<0.001 in FBTCS+ compared to 21 connections altered at t>3, p=0.01 in FBTCS-). Significantly greater abnormalities-aggregated over the entire brain network as well as assessed at the resolution of individual brain areas-were present in FBTCS+ patients (p<0.001, d=0.82). In contrast, the fewer abnormalities present in FBTCS- patients were mainly localised to the temporal and frontal areas. Significance: The whole-brain structural network is altered to a greater and more widespread extent in patients with TLE and FBTCS. We suggest that these abnormal networks may serve as an underlying structural basis or consequence of the greater seizure spread observed in FBTCS.



قيم البحث

اقرأ أيضاً

A seizures electrographic dynamics are characterised by its spatiotemporal evolution, also termed dynamical pathway and the time it takes to complete that pathway, which results in the seizures duration. Both seizure pathways and durations can vary w ithin the same patient, producing seizures with different dynamics, severity, and clinical implications. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using 1) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean 6.7 days, 16.5 seizures/subject), 2) NeuroVista chronic iEEG recordings of 10 patients (mean 521.2 days, 252.6 seizures/subject), and 3) chronic iEEG recordings of 3 dogs with focal-onset seizures (mean 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was weakened by seizures that 1) had a common pathway, but different durations (elastic pathways), or 2) had similar durations, but followed different pathways (duplicate durations). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by different processes. Uncovering such modulators may reveal novel therapeutic targets for reducing seizure duration and severity.
Seizure activity is a ubiquitous and pernicious pathophysiology that, in principle, should yield to mathematical treatments of (neuronal) ensemble dynamics - and therefore interventions on stochastic chaos. A seizure can be characterised as a deviati on of neural activity from a stable dynamical regime, i.e. one in which signals fluctuate only within a limited range. In silico treatments of neural activity are an important tool for understanding how the brain can achieve stability, as well as how pathology can lead to seizures and potential strategies for mitigating instabilities, e.g. via external stimulation. Here, we demonstrate that the (neuronal) state equation used in Dynamic Causal Modelling generalises to a Fokker-Planck formalism when propagation of neuronal activity along structural connections is considered. Using the Jacobian of this generalised state equation, we show that an initially unstable system can be rendered stable via a reduction in diffusivity (i.e., connectivity that disperses neuronal fluctuations). We show, for neural systems prone to epileptic seizures, that such a reduction can be achieved via external stimulation. Specifically, we show that this stimulation should be applied in such a way as to temporarily mirror epileptic activity in the areas adjoining an affected brain region - thus fighting seizures with seizures. We offer proof of principle using simulations based on functional neuroimaging data collected from patients with idiopathic generalised epilepsy, in which we successfully suppress pathological activity in a distinct sub-network. Our hope is that this technique can form the basis for real-time monitoring and intervention devices that are capable of suppressing or even preventing seizures in a non-invasive manner.
Background: We sought to determine if ripple oscillations (80-120Hz), detected in intracranial EEG (iEEG) recordings of epilepsy patients, correlate with an enhancement or disruption of verbal episodic memory encoding. Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch, and included the seizure onset zone (SOZ) as a covariate in the LRMs. Results: We detected events during 58,312 word presentation trials from 7,630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the seizure onset zone (SOZ, p<0.04). In the left temporal neocortex RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however this effect only met significance in the SOZ (OR of word recall 0.71, 95% CI: 0.59-0.85, n=158 events, adaptive Hochberg p<0.01). Ripple on oscillation events (RonO) that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR 0.52, 95% CI: 0.34-0.80, n=140, adaptive Hochberg , p<0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus during word presentation correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p<0.01). Conclusion: Ripples and spikes generated in left temporal neocortex are associated with impaired verbal episodic memory encoding.
We assess electrical brain dynamics before, during, and after one-hundred human epileptic seizures with different anatomical onset locations by statistical and spectral properties of functionally defined networks. We observe a concave-like temporal e volution of characteristic path length and cluster coefficient indicative of a movement from a more random toward a more regular and then back toward a more random functional topology. Surprisingly, synchronizability was significantly decreased during the seizure state but increased already prior to seizure end. Our findings underline the high relevance of studying complex systems from the view point of complex networks, which may help to gain deeper insights into the complicated dynamics underlying epileptic seizures.
Chimera states---the coexistence of synchrony and asynchrony in a nonlocally-coupled network of identical oscillators---are often used as a model framework for epileptic seizures. Here, we explore the dynamics of chimera states in a network of modifi ed Hindmarsh-Rose neurons, configured to reflect the graph of the mesoscale mouse connectome. Our model produces superficially epileptiform activity converging on persistent chimera states in a large region of a two-parameter space governing connections (a) between subcortices within a cortex and (b) between cortices. Our findings contribute to a growing body of literature suggesting mathematical models can qualitatively reproduce epileptic seizure dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا