ﻻ يوجد ملخص باللغة العربية
Magnetic-domain structure and dynamics play an important role in understanding and controlling the magnetic properties of two-dimensional magnets, which are of interest to both fundamental studies and applications[1-5]. However, the probe methods based on the spin-dependent optical permeability[1,2,6] and electrical conductivity[7-10] can neither provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to image and understand the rich properties of magnetic domains. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr$_3$. The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism with a saturation magnetization of about 26~$mu_B$/nm$^2$ for bilayer CrBr$_3$. The magnetic-domain structure and pinning-effect dominated domain reversal process are verified by micromagnetic simulation. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore two-dimensional magnetism at the nanoscale.
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferro
Interactions between pairs of magnetic domain walls (DW) and pinning by radial constrictions were studied in cylindrical nanowires with surface roughness. It was found that a radial constriction creates a symmetric pinning potential well, with a chan
We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite
The motion of a domain wall in a two dimensional medium is studied taking into account the internal elastic degrees of freedom of the wall and geometrical pinning produced both by holes and sample boundaries. This study is used to analyze the geometr
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen