ﻻ يوجد ملخص باللغة العربية
For machine learning of interatomic potentials a scalable sparse Gaussian process regression formalism is introduced with a data-efficient on-the-fly adaptive sampling algorithm. With this approach, the computational cost is effectively reduced to those of the Bayesian linear regression methods whilst maintaining the appealing characteristics of the exact Gaussian process regression. As a showcase, experimental melting and glass-crystallization temperatures are reproduced for Li7P3S11, Li diffusivity is simulated, and an unchartered phase is revealed with much lower Li diffusivity which should be circumvented.
Solid-state ionic conduction is a key enabler of electrochemical energy storage and conversion. The mechanistic connections between material processing, defect chemistry, transport dynamics, and practical performance are of considerable importance, b
The existence of passivating layers at the interfaces is a major factor enabling modern lithium-ion (Li-ion) batteries. Their properties determine the cycle life, performance, and safety of batteries. A special case is the solid electrolyte interphas
It has been a challenge to accurately simulate Li-ion diffusion processes in battery materials at room temperature using {it ab initio} molecular dynamics (AIMD) due to its high computational cost. This situation has changed drastically in recent yea
Abstract Machine learning models, trained on data from ab initio quantum simulations, are yielding molecular dynamics potentials with unprecedented accuracy. One limiting factor is the quantity of available training data, which can be expensive to ob
As a storage material for Li-ion batteries, graphene/molybdenum disulfide (Gr/MoS2) composites have been intensively studied in experiments. But the relevant theoretical works from first-principles are lacking. In the current work, van-der-Waals-corr