ﻻ يوجد ملخص باللغة العربية
We investigate the large time behavior of multi-dimensional aggregation equations driven by Newtonian repulsion, and balanced by radial attraction and confinement. In case of Newton repulsion with radial confinement we quantify the algebraic convergence decay rate towards the unique steady state. To this end, we identify a one-parameter family of radial steady states, and prove dimension-dependent decay rate in energy and 2-Wassertein distance, using a comparison with properly selected radial steady states. We also study Newtonian repulsion and radial attraction. When the attraction potential is quadratic it is known to coincide with quadratic confinement. Here we study the case of perturbed radial quadratic attraction, proving that it still leads to one-parameter family of unique steady states. It is expected that this family to serve for a corresponding comparison argument which yields algebraic convergence towards steady repulsive-attractive solutions.
We consider density solutions for gradient flow equations of the form $u_t = abla cdot ( gamma(u) abla mathrm N(u))$, where $mathrm N$ is the Newtonian repulsive potential in the whole space $mathbb R^d$ with the nonlinear convex mobility $gamma(u)
We consider a space-homogeneous gas of {it inelastic hard spheres}, with a {it diffusive term} representing a random background forcing (in the framework of so-called {em constant normal restitution coefficients} $alpha in [0,1]$ for the inelasticity
Magnetorotational turbulence provides a viable mechanism for angular momentum transport in accretion disks. We present global, three dimensional (3D), MHD accretion disk simulations that investigate the dependence of the turbulent stresses on resolut
We prove the propagation of regularity, uniformly in time, for the scaled solutions of one-dimensional dissipative Maxwell models. This result together with the weak convergence towards the stationary state proven by Pareschi and Toscani in 2006 impl
The paper is concerned with the steady-state Burgers equation of fractional dissipation on the real line. We first prove the global existence of viscosity weak solutions to the fractal Burgers equation driven by the external force. Then the existence