ترغب بنشر مسار تعليمي؟ اضغط هنا

Dippers from the TESS Full-Frame Images I: The Results of the first 1 year data and Discovery of A Runaway dipper

77   0   0.0 ( 0 )
 نشر من قبل Tomoyuki Tajiri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive catalog of the dippers---young stellar objects that exhibit episodic dimming---derived from the one years worth of data of Transiting Exoplanet Survey Satellite ($ TESS$) full-frame images. In the survey, we found 35 dippers using the convolutional neural network, most of them newly discovered. Although these dippers are widely distributed over the first half-hemisphere that $TESS$ surveyed, we identified the majoritys membership with the nearest association Scorpius--Centaurus, Velorum OB2, and nearby Orion molecular cloud complex. However, several dippers are likely to be located in the field. We also found three old dippers whose age exceeds ten million year, which is considered as the disk dissipation time. The color-color diagram indicates that these old dippers are likely to have an extreme debris disk. In particular, we found a runaway old dipper having a large three-dimensional velocity of $72 mathrm{km s}^{-1}$. The dippers in the field, which were probably escaping from their birth molecular clouds or were born outside the current area of star forming regions, are more common than previously considered.



قيم البحث

اقرأ أيضاً

The Transiting Exoplanet Survey Satellite (TESS) is the first high-precision full-sky photometry survey in space. We present light curves from a magnitude limited set of stars and other stationary luminous objects from the TESS Full Frame Images, as reduced by the MIT Quick Look Pipeline (QLP). Our light curves cover the full two-year TESS Primary Mission and include $sim$ 14,770,000 and $sim$ 9,600,000 individual light curve segments in the Southern and Northern ecliptic hemispheres, respectively. We describe the photometry and detrending techniques we used to create the light curves, and compare the noise properties with theoretical expectations. All of the QLP light curves are available at MAST as a High Level Science Product via doi.org/10.17909/t9-r086-e880 (https://archive.stsci.edu/hlsp/qlp). This is the largest collection of TESS photometry available to the public to date.
Warm Jupiters -- defined here as planets larger than 6 Earth radii with orbital periods of 8--200 days -- are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in sit u, undergo disk or high eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the TESS survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the Full-Frame Images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS Objects of Interest (TOIs) by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations (TTVs), and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a Beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
190 - M. Montalto 2020
In this work, we present the analysis of 976 814 FGKM dwarf and sub-giant stars in the TESS Full Frame Images (FFIs) of the Southern ecliptic hemisphere. We present a new pipeline, DIAmante, developed to extract optimized, multi-sector photometry fro m TESS FFIs and a classifier, based on the Random Forest technique, trained to discriminate plausible transiting planetary candidates from common false positives. A new statistical model was developed to provide the probability of correct identification of the source of variability. We restricted the planet search to the stars located in the least crowded regions of the sky and identified 396 transiting planetary candidates among which 252 are new detections. The candidates radius distribution ranges between 1 R$rm_{oplus}$ and 2.6 R$rm_J$ with median value of 1 R$rm_J$ and the period distribution ranges between 0.25 days and 105 days with median value of 3.8 days. The sample contains four long period candidates (P>50 days) one of which is new and 64 candidates with periods between 10 and 50 days (42 new ones). In the small planet radius domain (R<4 R$rm_{oplus}$) we found 39 candidates among which 15 are new detections. Additionally, we present 15 single transit events (14 new ones), a new candidate multi-planetary system and a novel candidate around a known TOI. By using {it Gaia} dynamical constraints we found that 70 objects show evidence of binarity. We release a catalog of the objects we analyzed and the corresponding lightcurves and diagnostic figures through the MAST and ExoFOP portals.
We report the discovery of two short-period massive giant planets from NASAs Transiting Exoplanet Survey Satellite (TESS). Both systems, TOI-558 (TIC 207110080) and TOI-559 (TIC 209459275), were identified from the 30-minute cadence Full Frame Images and confirmed using ground-based photometric and spectroscopic follow-up observations from TESSs Follow-up Observing Program Working Group. We find that TOI-558 b, which transits an F-dwarf ($M_{star}=1.349^{+0.064}_{-0.065} M_{odot}$, $R_{star}=1.496^{+0.042}_{-0.040} R_{odot}$, $T_{eff}=6466^{+95}_{-93}$ K, age $1.79^{+0.91}_{-0.73}$ Gyr) with an orbital period of 14.574 days, has a mass of $3.61pm0.15 M_J$, a radius of $1.086^{+0.041}_{-0.038} R_J$, and an eccentric (e=$0.300^{+0.022}_{-0.020}$) orbit. TOI-559 b transits a G-dwarf ($M_{star}=1.026pm0.057 M_{odot}$, $R_{star}=1.233^{+0.028}_{-0.026} R_{odot}$, $T_{eff}=5925^{+85}_{-76}$ K, age $1.79^{+0.91}_{-0.73}$ Gyr) in an eccentric (e=$0.151pm0.011$) 6.984-day orbit with a mass of $6.01^{+0.24}_{-0.23} M_J$ and a radius of $1.091^{+0.028}_{-0.025} R_J$. Our spectroscopic follow-up also reveals a long-term radial velocity trend for TOI-559, indicating a long-period companion. The statistically significant orbital eccentricity measured for each system suggests that these planets migrated to their current location through dynamical interactions. Interestingly, both planets are also massive ($>3 M_J$), adding to the population of massive hot Jupiters identified by TESS. Prompted by these new detections of high-mass planets, we analyzed the known mass distribution of hot Jupiters but find no significant evidence for multiple populations. TESS should provide a near magnitude-limited sample of transiting hot Jupiters, allowing for future detailed population studies.
We present the discovery and characterization of five hot and warm Jupiters -- TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) -- bas ed on data from NASAs Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the $TESS$ Follow-up Observing Program (TFOP) Working Group. The planets are all Jovian size (R$_{rm P}$ = 1.01-1.77 R$_{rm J}$) and have masses that range from 0.85 to 6.33 M$_{rm J}$. The host stars of these systems have F and G spectral types (5595 $le$ T$_{rm eff}$ $le$ 6460 K) and are all relatively bright (9 $<V<$ 10.8, 8.2 $<K<$ 9.3) making them well-suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g$_*$ $<$4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R$_{rm P}$ > 1.7R$_{rm J}$, possibly a result of its host stars evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive hot Jupiter discovered to date by $TESS$ with a measured mass of $6.31^{+0.28}_{-0.30}$ M$_{rm J}$ and a statistically significant, non-zero orbital eccentricity of e = $0.074^{+0.021}_{-0.022}$. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-Solar analogue. NASAs $TESS$ mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا