ﻻ يوجد ملخص باللغة العربية
Pronoun Coreference Resolution (PCR) is the task of resolving pronominal expressions to all mentions they refer to. Compared with the general coreference resolution task, the main challenge of PCR is the coreference relation prediction rather than the mention detection. As one important natural language understanding (NLU) component, pronoun resolution is crucial for many downstream tasks and still challenging for existing models, which motivates us to survey existing approaches and think about how to do better. In this survey, we first introduce representative datasets and models for the ordinary pronoun coreference resolution task. Then we focus on recent progress on hard pronoun coreference resolution problems (e.g., Winograd Schema Challenge) to analyze how well current models can understand commonsense. We conduct extensive experiments to show that even though current models are achieving good performance on the standard evaluation set, they are still not ready to be used in real applications (e.g., all SOTA models struggle on correctly resolving pronouns to infrequent objects). All experiment codes are available at https://github.com/HKUST-KnowComp/PCR.
Resolving pronoun coreference requires knowledge support, especially for particular domains (e.g., medicine). In this paper, we explore how to leverage different types of knowledge to better resolve pronoun coreference with a neural model. To ensure
Linking pronominal expressions to the correct references requires, in many cases, better analysis of the contextual information and external knowledge. In this paper, we propose a two-layer model for pronoun coreference resolution that leverages both
Masked language models (MLMs) have contributed to drastic performance improvements with regard to zero anaphora resolution (ZAR). To further improve this approach, in this study, we made two proposals. The first is a new pretraining task that trains
No neural coreference resolver for Arabic exists, in fact we are not aware of any learning-based coreference resolver for Arabic since (Bjorkelund and Kuhn, 2014). In this paper, we introduce a coreference resolution system for Arabic based on Lee et
The introduction of pretrained language models has reduced many complex task-specific NLP models to simple lightweight layers. An exception to this trend is coreference resolution, where a sophisticated task-specific model is appended to a pretrained