ترغب بنشر مسار تعليمي؟ اضغط هنا

Sentifiers: Interpreting Vague Intent Modifiers in Visual Analysis using Word Co-occurrence and Sentiment Analysis

59   0   0.0 ( 0 )
 نشر من قبل Vidya Setlur
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural language interaction with data visualization tools often involves the use of vague subjective modifiers in utterances such as show me the sectors that are performing and where is a good neighborhood to buy a house?. Interpreting these modifiers is often difficult for these tools because their meanings lack clear semantics and are in part defined by context and personal user preferences. This paper presents a system called system that makes a first step in better understanding these vague predicates. The algorithm employs word co-occurrence and sentiment analysis to determine which data attributes and filters ranges to associate with the vague predicates. The provenance results from the algorithm are exposed to the user as interactive text that can be repaired and refined. We conduct a qualitative evaluation of the Sentifiers system that indicates the usefulness of the interface as well as opportunities for better supporting subjective utterances in visual analysis tasks through natural language.



قيم البحث

اقرأ أيضاً

Sentiment analysis is attracting more and more attentions and has become a very hot research topic due to its potential applications in personalized recommendation, opinion mining, etc. Most of the existing methods are based on either textual or visu al data and can not achieve satisfactory results, as it is very hard to extract sufficient information from only one single modality data. Inspired by the observation that there exists strong semantic correlation between visual and textual data in social medias, we propose an end-to-end deep fusion convolutional neural network to jointly learn textual and visual sentiment representations from training examples. The two modality information are fused together in a pooling layer and fed into fully-connected layers to predict the sentiment polarity. We evaluate the proposed approach on two widely used data sets. Results show that our method achieves promising result compared with the state-of-the-art methods which clearly demonstrate its competency.
The growing use of automated decision-making in critical applications, such as crime prediction and college admission, has raised questions about fairness in machine learning. How can we decide whether different treatments are reasonable or discrimin atory? In this paper, we investigate discrimination in machine learning from a visual analytics perspective and propose an interactive visualization tool, DiscriLens, to support a more comprehensive analysis. To reveal detailed information on algorithmic discrimination, DiscriLens identifies a collection of potentially discriminatory itemsets based on causal modeling and classification rules mining. By combining an extended Euler diagram with a matrix-based visualization, we develop a novel set visualization to facilitate the exploration and interpretation of discriminatory itemsets. A user study shows that users can interpret the visually encoded information in DiscriLens quickly and accurately. Use cases demonstrate that DiscriLens provides informative guidance in understanding and reducing algorithmic discrimination.
The study of electronic transitions within a molecule connected to the absorption or emission of light is a common task in the process of the design of new materials. The transitions are complex quantum mechanical processes and a detailed analysis re quires a breakdown of these processes into components that can be interpreted via characteristic chemical properties. We approach these tasks by providing a detailed analysis of the electron density field. This entails methods to quantify and visualize electron localization and transfer from molecular subgroups combining spatial and abstract representations. The core of our method uses geometric segmentation of the electronic density field coupled with a graph-theoretic formulation of charge transfer between molecular subgroups. The design of the methods has been guided by the goal of providing a generic and objective analysis following fundamental concepts. We illustrate the proposed approach using several case studies involving the study of electronic transitions in different molecular systems.
Brain Computer Interface (BCI) helps in processing and extraction of useful information from the acquired brain signals having applications in diverse fields such as military, medicine, neuroscience, and rehabilitation. BCI has been used to support p aralytic patients having speech impediments with severe disabilities. To help paralytic patients communicate with ease, BCI based systems convert silent speech (thoughts) to text. However, these systems have an inconvenient graphical user interface, high latency, limited typing speed, and low accuracy rate. Apart from these limitations, the existing systems do not incorporate the inevitable factor of a patients emotional states and sentiment analysis. The proposed system EmoWrite implements a dynamic keyboard with contextualized appearance of characters reducing the traversal time and improving the utilization of the screen space. The proposed system has been evaluated and compared with the existing systems for accuracy, convenience, sentimental analysis, and typing speed. This system results in 6.58 Words Per Minute (WPM) and 31.92 Characters Per Minute (CPM) with an accuracy of 90.36 percent. EmoWrite also gives remarkable results when it comes to the integration of emotional states. Its Information Transfer Rate (ITR) is also high as compared to other systems i.e., 87.55 bits per min with commands and 72.52 bits per min for letters. Furthermore, it provides easy to use interface with a latency of 2.685 sec.
Visual analytics systems enable highly interactive exploratory data analysis. Across a range of fields, these technologies have been successfully employed to help users learn from complex data. However, these same exploratory visualization techniques make it easy for users to discover spurious findings. This paper proposes new methods to monitor a users analytic focus during visual analysis of structured datasets and use it to surface relevant articles that contextualize the visualized findings. Motivated by interactive analyses of electronic health data, this paper introduces a formal model of analytic focus, a computational approach to dynamically update the focus model at the time of user interaction, and a prototype application that leverages this model to surface relevant medical publications to users during visual analysis of a large corpus of medical records. Evaluation results with 24 users show that the modeling approach has high levels of accuracy and is able to surface highly relevant medical abstracts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا