ﻻ يوجد ملخص باللغة العربية
A highly reflective sail provides a way to propel a spacecraft out of the solar system using solar radiation pressure. The closer the spacecraft is to the Sun when it starts its outward journey, the larger the radiation pressure and so the larger the final velocity. For a spacecraft starting on the Earths orbit, closer proximity can be achieved via a retrograde impulse from a rocket engine. The sail is then deployed at the closest approach to the Sun. Employing the so-called Oberth effect, a second, prograde, impulse at closest approach will raise the final velocity further. Here I investigate how a fixed total impulse ({Delta}v) can best be distributed in this procedure to maximize the sails velocity at infinity. Once {Delta}v exceeds a threshold that depends on the lightness number of the sail (a measure of its sun-induced acceleration), the best strategy is to use all of the {Delta}v in the retrograde impulse to dive as close as possible to the Sun. Below the threshold the best strategy is to use all of the {Delta}v in the prograde impulse and thus not to dive at all. Although larger velocities can be achieved with multi-stage impulsive transfers, this study shows some interesting and perhaps counter-intuitive consequences of combining impulses with solar sails.
Background: A solar sail presents a large sheet of low areal density membrane and is the most elegant propellant-less propulsion system for the future exploration of the Solar System and beyond. By today the study on sail membrane deployment strategi
We argue that light sails that are rapidly accelerated to relativistic velocities by lasers must be significantly curved in order to reduce their mechanical stresses and avoid tears. Using an integrated opto-thermo-mechanical model, we show that the
Following from the results of the first systematic modern low frequency Search for Extraterrestrial Intelligence (SETI) using the Murchison Widefield Array (MWA), which was directed toward a Galactic Center field, we report a second survey toward a G
Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is $sim 10^{3}, mathrm{J,kg^{-1},s^{-1}}$,
The unplaced Fragment D of the Antikythera Mechanism with an unknown operation was a mystery since the beginning of its discovery. The gear r1, which was detected on the Fragment radiographies by C. Karakalos, is preserved in excellent contdition, bu