ﻻ يوجد ملخص باللغة العربية
Consider a locally Lipschitz function $u$ on the closure of a possibly unbounded open subset $Omega$ of $mathbb{R}^n$ with $C^{1,1}$ boundary. Suppose $u$ is semiconcave on $overline Omega$ with a fractional semiconcavity modulus. Is it possible to extend $u$ in a neighborhood of any boundary point retaining the same semiconcavity modulus? We show that this is indeed the case and we give two applications of this extension property. First, we derive an approximation result for semiconcave functions on closed domains. Then, we use the above extension property to study the propagation of singularities of semiconcave functions at boundary points.
We develop the notion of higher Cheeger constants for a measurable set $Omega subset mathbb{R}^N$. By the $k$-th Cheeger constant we mean the value [h_k(Omega) = inf max {h_1(E_1), dots, h_1(E_k)},] where the infimum is taken over all $k$-tuples of m
We prove existence of weak solutions to the obstacle problem for semilinear wave equations (including the fractional case) by using a suitable approximating scheme in the spirit of minimizing movements. This extends the results in [9], where the line
We study a model for combustion on a boundary. Specifically, we study certain generalized solutions of the equation [ (-Delta)^s u = chi_{{u>c}} ] for $0<s<1$ and an arbitrary constant $c$. Our main object of study is the free boundary $partial{u>c
We consider an evolution equation with the Caputo-Dzhrbashyan fractional derivative of order $alpha in (1,2)$ with respect to the time variable, and the second order uniformly elliptic operator with variable coefficients acting in spatial variables.
In this article we study ergodic problems in the whole space $mathbb{R}^N$ for a weakly coupled systems of viscous Hamilton-Jacobi equations with coercive right-hand sides. The Hamiltonians are assumed to have a fairly general structure and the switc