ترغب بنشر مسار تعليمي؟ اضغط هنا

uGMRT HI 21-cm absorption observations of two extremely inverted spectrum sources

74   0   0.0 ( 0 )
 نشر من قبل Mukul Mhaskey Mr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of HI 21-cm absorption in a member of the rare and recently discovered class of compact radio sources, Extremely Inverted Spectrum Extragalactic Radio Sources (EISERS). EISERS conceivably form a special sub-class of the inverted spectrum radio galaxies since the spectral index of the optically thick part of the spectrum for these sources crosses the synchrotron self absorption limit of $alpha=+2.5$ (S($ u$) $propto$ $ u^{alpha}$). We have searched for HI absorption in two EISERS using the recently upgraded Giant Metrewave Radio Telescope (uGMRT) and detected an absorption feature in one of them. The strong associated HI absorption detected against the source J1209$-$2032 ($z$=0.4040) implies an optical depth of 0.178$pm$0.02 corresponding to an HI column density of 34.8$pm$2.9 $times$10$^{20}$ cm$^{-2}$, for an assumed HI spin temperature of 100 K and covering factor of 1. This is among the highest known optical depth and HI column densities found for compact radio sources of GPC/CSS type and supports the free-free absorption model for the steeply inverted radio spectrum of this source. For the other source, J1549$+$5038 ($z$ = 2.171), no HI absorption was detected in our observations.



قيم البحث

اقرأ أيضاً

104 - Bo Zhang , Ming Zhu , Zhong-Zu Wu 2021
We present a pilot study of extragalactic HI 21-cm absorption lines using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). We observed 5 continuum sources with HI absorption features firstly identified in the 40% data release of the Arecibo Legacy Fast Arecibo L-Band Feed Array (ALFA) Survey (ALFALFA), including two systems later detected by the Westerbork Synthesis Radio Telescope (WSRT). Most of our observations were carried out during the FAST commissioning phase, and we have tested different observing modes, as well as data reduction methods, to produce the best spectra. Our observations successfully confirmed the existence of HI absorption lines in all these systems, including two sources that were marginally detected by ALFALFA. We fitted the HI profiles with single or double of Gaussian functions, and calculated the HI column densities of each source. The HI absorption profiles obtained by FAST show much higher spectral resolution and higher S/N ratio than the existing data in the literature, thus demonstrating the power of FAST in revealing detailed structures of HI absorption lines. Our pilot observations and tests have enabled us to develop a strategy to search for HI absorption sources using the data from the FAST extragalactic HI survey, which is one of the key projects undertaken at FAST. We expect that over 1,500 extragalactic HI absorbing systems could be detected with survey data, based on sensitivity level we achieved in pilot observations.
This review summarises what we have learnt in the last two decades based on HI 21-cm absorption observations about the cold interstellar medium (ISM) in the central regions of active galaxies and the interplay between this gas and the active nucleus (AGN). HI absorption is a powerful tracer on all scales, from the pc scales to many tens of kpc. Given the strong radio continuum often associated with the central activity, HI absorption can be used to study the HI near an AGN out to much higher redshifts than is possible using HI emission. HI absorption has been used to characterise the general ISM in active galaxies, to trace the fuelling of radio-loud AGN, to study the feedback between the energy released by the AGN and the ISM, and the impact of such interactions on the evolution of galaxies and their AGN. In the last two decades, significant progress has been made in all these areas. It is now well established that many radio loud AGN are surrounded by small, regularly rotating gas disks that contain a significant fraction of HI. The structure of these disks has been traced down to parsec scales by VLBI observations. Young and recently restarted radio galaxies appear to have a high detection rate of HI. This is interesting in connection with the evolution of these AGN. This is confirmed by the discovery of fast, AGN-driven outflows of cold gas which give a direct view of the impact of the energy released by AGN. In addition, evidence has been collected that clouds of cold gas can play a role in fuelling the nuclear activity. This review ends by briefly describing the upcoming large, blind HI absorption surveys planned for the new radio telescopes which will soon become operational. These surveys will allow to significantly expand existing work, but will also allow to explore new topics, in particular the evolution of the cold ISM in AGN.
158 - R. Dutta , R. Srianand , N. Gupta 2016
We present the results from our search for HI 21-cm absorption in a sample of 16 strong FeII systems ($W_{rm r}$(MgII $lambda2796$) $ge1.0$ AA and $W_{rm r}$(FeII $lambda2600$) or $W_{rm FeII}$ $ge1$ AA) at $0.5<z<1.5$ using the Giant Metrewave Radio Telescope and the Green Bank Telescope. We report six new HI 21-cm absorption detections from our sample, which have increased the known number of detections in strong MgII systems at this redshift range by $sim50$%. Combining our measurements with those in the literature, we find that the detection rate of HI 21-cm absorption increases with $W_{rm FeII}$, being four times higher in systems with $W_{rm FeII}$ $ge1$ AA compared to systems with $W_{rm FeII}$ $<1$ AA. The $N$(HI) associated with the HI 21-cm absorbers would be $ge 2 times 10^{20}$ cm$^{-2}$, assuming a spin temperature of $sim500$ K (based on HI 21-cm absorption measurements of damped Lyman-$alpha$ systems at this redshift range) and unit covering factor. We find that HI 21-cm absorption arises on an average in systems with stronger metal absorption. We also find that quasars with HI 21-cm absorption detected towards them have systematically higher $E(B-V)$ values than those which do not. Further, by comparing the velocity widths of HI 21-cm absorption lines detected in absorption- and galaxy-selected samples, we find that they show an increasing trend (significant at $3.8sigma$) with redshift at $z<3.5$, which could imply that the absorption originates from more massive galaxy haloes at high-$z$. Increasing the number of HI 21-cm absorption detections at these redshifts is important to confirm various trends noted here with higher statistical significance.
Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preli minary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signal: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that that the SKA1-low should be able to detect ionized bubbles of radius $R_b gtrsim 10$ Mpc with $sim 100$ hr of observations at redshift $z sim 8$ provided that the mean outside neutral Hydrogen fraction $ x_{rm HI} gtrsim 0.5$. We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. 2011. We find that a $5 sigma$ detection is possible with $600$ hr of SKA1-low observations if the QSO age and the outside $ x_{rm HI} $ are at least $sim 2 times 10^7$ Myr and $sim 0.2$ respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly-$alpha$ sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total $sim 1000$ hr of observations, SKA1-low should be able to detect those sources individually with a $sim 9 sigma$ significance at redshift $z=15$. We summarize how the SNR changes with various parameters related to the source properties.
We report a Giant Metrewave Radio Telescope (GMRT) survey for associated HI 21-cm absorption from 50 active galactic nuclei (AGNs), at $z approx 0.04 - 3.01$, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. Clean spectra were obtai ned towards 40 sources, yielding two new absorption detections, at $z = 0.229$ towards TXS 0003+380 and $z = 0.333$ towards TXS 1456+375, besides confirming an earlier detection, at $z = 1.277$ towards TXS 1543+480. There are 92 CJF sources, at $0.01 lesssim z lesssim 3.6$, with searches for associated HI 21-cm absorption, by far the largest uniformly-selected AGN sample with searches for such absorption. We find weak ($approx 2sigma$) evidence for a lower detection rate of HI 21-cm absorption at high redshifts, with detection rates of $28^{+10}_{-8}$% and $7^{+6}_{-4}$% in the low-$z$ ($z < z_{rm med}$) and high-$z$ ($z > z_{rm med}$) sub-samples, respectively. We use two-sample tests to find that the strength of the HI 21-cm absorption in the AGNs of our sample depends on both redshift and AGN luminosity, with a lower detection rate and weaker absorption at high redshifts and high ultraviolet/radio AGN luminosities. Unfortunately, the luminosity bias in our sample, with high-luminosity AGNs arising at high redshifts, implies that it is not currently possible to identify whether redshift evolution or AGN luminosity is the primary cause of the weaker absorption in high-$z$, high-luminosity AGNs. We find that the strength of HI 21-cm absorption does not depend on AGN colour, suggesting that dust extinction is not the main cause of reddening in the CJF sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا