ﻻ يوجد ملخص باللغة العربية
As vehicles playing an increasingly important role in peoples daily life, requirements on safer and more comfortable driving experience have arisen. Connected vehicles (CVs) can provide enabling technologies to realize these requirements and have attracted widespread attentions from both academia and industry. These requirements ask for a well-designed computing architecture to support the Quality-of-Service (QoS) of CV applications. Computation offloading techniques, such as cloud, edge, and fog computing, can help CVs process computation-intensive and large-scale computing tasks. Additionally, different cloud/edge/fog computing architectures are suitable for supporting different types of CV applications with highly different QoS requirements, which demonstrates the importance of the computing architecture design. However, most of the existing surveys on cloud/edge/fog computing for CVs overlook the computing architecture design, where they (i) only focus on one specific computing architecture and (ii) lack discussions on benefits, research challenges, and system requirements of different architectural alternatives. In this paper, we provide a comprehensive survey on different architectural design alternatives based on cloud/edge/fog computing for CVs. The contributions of this paper are: (i) providing a comprehensive literature survey on existing proposed architectural design alternatives based on cloud/edge/fog computing for CVs, (ii) proposing a new classification of computing architectures based on cloud/edge/fog computing for CVs: computation-aided and computation-enabled architectures, (iii) presenting a holistic comparison among different cloud/edge/fog computing architectures for CVs based on functional requirements of CV systems, including advantages, disadvantages, and research challenges.
This paper studies edge caching in fog computing networks, where a capacity-aware edge caching framework is proposed by considering both the limited fog cache capacity and the connectivity capacity of base stations (BSs). By allowing cooperation betw
The concept of fog computing is centered around providing computation resources at the edge of network, thereby reducing the latency and improving the quality of service. However, it is still desirable to investigate how and where at the edge of the
Edge computing-enhanced Internet of Vehicles (EC-IoV) enables ubiquitous data processing and content sharing among vehicles and terrestrial edge computing (TEC) infrastructures (e.g., 5G base stations and roadside units) with little or no human inter
Fog computing extends cloud computing technology to the edge of the infrastructure to let IoT applications access objects data with reduced latency, location awareness and dynamic computation. By displacing workloads from the central cloud to the edg
Vehicular edge computing (VEC) is envisioned as a promising approach to process the explosive computation tasks of vehicular user (VU). In the VEC system, each VU allocates power to process partial tasks through offloading and the remaining tasks thr