ترغب بنشر مسار تعليمي؟ اضغط هنا

Three open clusters containing Cepheids: NGC 6649, NGC 6664 and Berkeley 55

72   0   0.0 ( 0 )
 نشر من قبل Javier Alonso-Santiago
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical Cepheids in open clusters play an important role in benchmarking stellar evolution models, anchoring the cosmic distance scale, and invariably securing the Hubble constant. NGC 6649, NGC 6664 and Berkeley 55 are three pertinent clusters that host classical Cepheids and red (super)giants, and an analysis was consequently initiated to assess newly acquired spectra ($approx$50), archival photometry, and $Gaia$ DR2 data. Importantly, for the first time chemical abundances are determined for the evolved members of NGC 6649 and NGC 6664. We find that they are slightly metal-poor relative to the mean Galactic gradient, and an overabundance of Ba is observed. Those clusters likely belong to the thin disc, and the latter finding supports DOrazi et al. (2009) $s$-enhanced scenario. NGC 6664 and Berkeley 55 exhibit radial velocities consistent with Galactic rotation, while NGC 6649 displays a peculiar velocity. The resulting age estimates for the clusters ($approx$70 Ma) imply masses for the (super)giant demographic of $approx$6 M$_{sun}$. Lastly, the observed yellow-to-red (super)giant ratio is lower than expected, and the overall differences relative to models reflect outstanding theoretical uncertainties.



قيم البحث

اقرأ أيضاً

142 - M. E. Lohr 2018
As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch p hotometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83+/-0.01 d and 5.850+/-0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3(+1.0,-0.8) kpc and an age of 44(+9,-8) Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2+/-0.3 kpc and age of 63(+12,-11) Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.
492 - R. Carrera (1 , 2 , 3 2011
Context. Open clusters are ideal test particles to study the chemical evolution of the Galactic disc. However the existing high-resolution abundance determinations, not only of [Fe/H], but also of other key elements, is largely insufficient at the mo ment. Aims. To increase the number of Galactic open clusters with high quality abundance determinations, and to gather all the literature determinations published so far. Methods. Using high-resolution (R~30000), high-quality (S/N$>60 per pixel), we obtained spectra for twelve stars in four open clusters with the fiber spectrograph FOCES, at the 2.2 Calar Alto Telescope in Spain. We use the classical equivalent widths analysis to obtain accurate abundances of sixteen elements: Al, Ba, Ca, Co, Cr, Fe, La, Mg, Na, Nd, Ni, Sc, Si, Ti, V, Y. Oxygen abundances have been derived through spectral synthesis of the 6300 A forbidden line. Results. We provide the first determination of abundance ratios other than Fe for NGC 752 giants, and ratios in agreement with the literature for the Hyades, Praesepe and Be 32. We use a compilation of literature data to study Galactic trends of [Fe/H] and [alpha/Fe] with Galactocentric radius, age, and height above the Galactic plane. We find no significant trends, but some indication for a flattening of [Fe/H] at large Rgc, and for younger ages in the inner disc. We also found a possible decrease of [Fe/H] with |z| in the outer disc, and a weak increase of [alpha/Fe] with Rgc.
The morphology and cluster membership of the Galactic open clusters - Czernik 20 and NGC 1857 were analyzed using two different clustering algorithms. We present the maiden use of density-based spatial clustering of applications with noise (DBSCAN) t o determine open cluster morphology from spatial distribution. The region of analysis has also been spatially classified using a statistical membership determination algorithm. We utilized near infrared (NIR) data for a suitably large region around the clusters from the United Kingdom Infrared Deep Sky Survey Galactic Plane Survey star catalogue database, and also from the Two Micron All Sky Survey star catalogue database. The densest regions of the cluster morphologies (1 for Czernik 20 and 2 for NGC 1857) thus identified were analyzed with a K-band extinction map and color-magnitude diagrams (CMDs). To address significant discrepancy in known distance and reddening parameters, we carried out field decontamination of these CMDs and subsequent isochrone fitting of the cleaned CMDs to obtain reliable distance and reddening parameters for the clusters (Czernik 20: D = 2900 pc; E(J-K) = 0.33; NGC 1857: D = 2400 pc; E(J-K) = 0.18-0.19). The isochrones were also used to convert the luminosity functions for the densest regions of Czernik 20 and NGC 1857 into mass function, to derive their slopes. Additionally, a previously unknown over-density consistent with that of a star cluster is identified in the region of analysis.
119 - R. Carrera 2015
Context: Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R~8000) in the infrared region Ca II triplet lines (~8500 AA) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5~m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca II lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain <V_r> = 48.6+/-3.4, -58.4+/-6.8, 26.0+/-4.3 and -65.3+/-3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603 and NGC 7245, respectively. We found [Fe/H] =-0.25+/-0.14 and -0.15+/-0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has a low metallicity, [Fe/H] =-0.42+/-0.13, similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived a high metallicity ([Fe/H] =+0.43+/-0.15) for NGC 6603, which places this system among the most metal rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members.
We present an analysis of three southern open star clusters NGC 6067, NGC 2506 and IC 4651 using wide-field photometric and Gaia DR2 astrometric data. They are poorly studied clusters. We took advantage of the synergy between Gaia DR2 high precision astrometric measurements and ground based wide-field photometry to isolate cluster members and further study these clusters. We identify the cluster members using proper motions, parallax and colour-magnitude diagrams. Mean proper motion of the clusters in RA and DEC is estimated as -1.90 pm 0.01 and -2.57 pm 0.01 mas/yr for NGC 6067, -2.57 pm 0.01 and 3.92 pm 0.01 mas/yr for NGC 2506 and -2.41 pm 0.01 and -5.05 pm 0.02 mas/yr for IC 4651. Distances are estimated as 3.01 pm 0.87, 3.88 pm 0.42 and 1.00 pm 0.08 kpc for the clusters NGC 6067, NGC 2506 and IC 4651 respectively using parallaxes taken from Gaia DR2 catalogue. Galactic orbits are determined for these clusters using Galactic potential models.We find that these clusters have circular orbits. Cluster radii are determined as 10 arcmin for NGC 6067, 12 arcmin for NGC 2506 and 11 arcmin for IC 4651. Ages of the clusters estimated by isochrones fitting are 66 pm 8 Myr, 2.09 pm 0.14 Gyr and 1.59 pm 0.14 Gyr for NGC 6067, NGC 2506 and IC 4651 respectively. Mass function slope for the entire region of cluster NGC 2506 is found to be comparable with the Salpeter value in the mass range 0.77 - 1.54 Solar mass. The mass function analysis shows that the slope becomes flat when one goes from halo to core region in all the three clusters. A comparison of dynamical age with clusters age indicates that NGC 2506 and IC 4651 are dynamically relaxed clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا