ﻻ يوجد ملخص باللغة العربية
We present a unifying variational calculus derivation of Groverian geodesics for both quantum state vectors and quantum probability amplitudes. In the first case, we show that horizontal affinely parametrized geodesic paths on the Hilbert space of normalized vectors emerge from the minimization of the length specified by the Fubini-Study metric on the manifold of Hilbert space rays. In the second case, we demonstrate that geodesic paths for probability amplitudes arise by minimizing the length expressed in terms of the Fisher information. In both derivations, we find that geodesic equations are described by simple harmonic oscillators (SHOs). However, while in the first derivation the frequency of oscillations is proportional to the (constant) energy dispersion of the Hamiltonian system, in the second derivation the frequency of oscillations is proportional to the square-root of the (constant) Fisher information. Interestingly, by setting these two frequencies equal to each other, we recover the well-known Anandan-Aharonov relation linking the squared speed of evolution of an Hamiltonian system with its energy dispersion. Finally, upon transitioning away from the quantum setting, we discuss the universality of the emergence of geodesic motion of SHO type in the presence of conserved quantities by analyzing two specific phenomena of gravitational and thermodynamical origin, respectively.
We consider planar quadrangulations with three marked vertices and discuss the geometry of triangles made of three geodesic paths joining them. We also study the geometry of minimal separating loops, i.e. paths of minimal length among all closed path
We propose a method to obtain optimal protocols for adiabatic ground-state preparation near the adiabatic limit, extending earlier ideas from [D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602 (2012)] to quantum non-dissipative systems. The
This work is devoted to show an equivalent description for the most probable transition paths of stochastic dynamical systems with Brownian noise, based on the theory of Markovian bridges. The most probable transition path for a stochastic dynamical
We connect the Grover walk with sinks to the Grover walk with tails. The survival probability of the Grover walk with sinks in the long time limit is characterized by the centered generalized eigenspace of the Grover walk with tails. The centered eig
We introduce an algebraic system which can be used as a model for spaces with geodesic paths between any two of their points. This new algebraic structure is based on the notion of mobility algebra which has recently been introduced as a model for th