ﻻ يوجد ملخص باللغة العربية
Observational studies of exoplanets are suggestive of a ubiquitous presence of clouds. The current modelling techniques used in emission to account for the clouds tend to require prior knowledge of the cloud condensing species and often do not consider the scattering effects of the cloud. We explore the effects that thermal scattering has on the emission spectra by modelling a suite of hot Jupiter atmospheres with varying cloud single-scattering albedos (SSAs) and temperature profiles. We examine cases ranging from simple isothermal conditions to more complex structures and physically driven cloud modelling. We show that scattering from nightside clouds would lead to brightness temperatures that are cooler than the real atmospheric temperature if scattering is unaccounted for. We show that scattering can produce spectral signatures in the emission spectrum even for isothermal atmospheres. We identify the retrieval degeneracies and biases that arise in the context of simulated JWST spectra when the scattering from the clouds dominates the spectral shape. Finally, we propose a novel method of fitting the SSA spectrum of the cloud in emission retrievals, using a technique that does not require any prior knowledge of the cloud chemical or physical properties.
With a scheduled launch in October 2018, the James Webb Space Telescope (JWST) is expected to revolutionise the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us t
JWST will provide moderate resolution transit spectra with continuous wavelength coverage from the optical to the mid-infrared for the first time. In this paper, we illustrate how different aerosol species, size-distributions, and spatial distributio
The Mid-Infrared instrument (MIRI) on board the James Webb Space Telescope will perform the first ever characterization of young giant exoplanets observed by direct imaging in the 5-28 microns spectral range. This wavelength range is key for both det
Large ground- and space-based telescopes will be able to observe Earth-like planets in the near future. We explore how different planetary surfaces can strongly influence the climate, atmospheric composition, and remotely detectable spectra of terres
With the discovery of ever smaller and colder exoplanets, terrestrial worlds with hazy atmospheres must be increasingly considered. Our Solar Systems Titan is a prototypical hazy planet, whose atmosphere may be representative of a large number of pla