ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for In-Situ Field OB Star Formation in the Small Magellanic Cloud

78   0   0.0 ( 0 )
 نشر من قبل Irene Vargas-Salazar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Whether any OB stars form in isolation is a question central to theories of massive star formation. To address this, we search for tiny, sparse clusters around 210 field OB stars from the Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4), using friends-of-friends (FOF) and nearest neighbors (NN) algorithms. We also stack the target fields to evaluate the presence of an aggregate density enhancement. Using several statistical tests, we compare these observations with three random-field datasets, and we also compare the known runaways to non-runaways. We find that the local environments of non-runaways show higher aggregate central densities than for runaways, implying the presence of some tips-of-iceberg (TIB) clusters. We find that the frequency of these tiny clusters is low, $sim 4-5%$ of our sample. This fraction is much lower than some previous estimates, but is consistent with field OB stars being almost entirely runaway and walkaway stars. The lack of TIB clusters implies that such objects either evaporate on short timescales, or do not form, implying a higher cluster lower-mass limit and consistent with a relationship between maximum stellar mass ($m_{rm max}$) and the mass of the cluster ($M_{rm cl}$). On the other hand, we also cannot rule out that some OB stars may form in highly isolated conditions. Our results set strong constraints on the formation of massive stars in relative isolation.



قيم البحث

اقرأ أيضاً

Runaway OB stars are ejected from their parent clusters via two mechanisms, both involving multiple stars: the dynamical ejection scenario (DES) and the binary supernova scenario (BSS). We constrain the relative contributions from these two ejection mechanisms in the Small Magellanic Cloud (SMC) using data for 304 field OB stars from the spatially complete, Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4). We obtain stellar masses and projected rotational velocities $v_rsin i $ for the sample using RIOTS4 spectra, and use transverse velocities $v_{rm loc}$ from $it{Gaia}$ DR2 proper motions. Kinematic analyses of the masses, $v_rsin i $, non-compact binaries, high-mass X-ray binaries, and Oe/Be stars largely support predictions for the statistical properties of the DES and BSS populations. We find that dynamical ejections dominate over supernova ejections by a factor of $sim 2-3$ in the SMC, and our results suggest a high frequency of DES runaways and binary ejections. Objects seen as BSS runaways also include two-step ejections of binaries that are reaccelerated by SN kicks. We find that two-step runaways likely dominate the BSS runaway population. Our results further imply that any contribution from $it{in-situ}$ field OB star formation is small. Finally, our data strongly support the post-mass-transfer model for the origin of classical Oe/Be stars, providing a simple explanation for the bimodality in the $v_rsin i $ distribution and high, near-critical, Oe/Be rotation velocities. The close correspondence of Oe/Be stars with BSS predictions implies that the emission-line disks are long-lived.
141 - Yoshifusa Ita 2018
A very long term near-infrared variable star survey towards the Large and Small Magellanic Clouds was carried out using the 1.4m InfraRed Survey Facility at the South African Astronomical Observatory. This project was initiated in December 2000 in th e LMC, and in July 2001 in the SMC. Since then an area of 3 square degrees along the bar in the LMC and an area of 1 square degree in the central part of the SMC have been repeatedly observed. This survey is ongoing, but results obtained with data taken until December 2017 are reported in this paper. Over more than 15 years we have observed the two survey areas more than one hundred times. This is the first survey that provides near-infrared time-series data with such a long time baseline and on such a large scale. This paper describes the observations in the SMC and publishes a point source photometric catalogue, a variable source catalogue, and time-series data.
We started a photometric survey using the WFC3/UVIS instrument onboard the Hubble Space Telescope to search for multiple populations within Magellanic Cloud star clusters at various ages. In this paper, we introduce this survey. As first results of t his programme, we also present multi-band photometric observations of NGC 121 in different filters taken with the WFC3/UVIS and ACS/WFC instruments. We analyze the colour-magnitude diagram (CMD) of NGC 121, which is the only classical globular cluster within the Small Magellanic Cloud. Thereby, we use the pseudo-colour C_(F336W,F438W,F343N)=(F336W-F438W)-(F438W-F343N) to separate populations with different C and N abundances. We show that the red giant branch splits up in two distinct populations when using this colour combination. NGC 121 thus appears to be similar to Galactic globular clusters in hosting multiple populations. The fraction of enriched stars (N rich, C poor) in NGC 121 is about 32% +/- 3%, which is lower than the median fraction found in Milky Way globular clusters. The enriched population seems to be more centrally concentrated compared to the primordial one. These results are consistent with the recent results by Dalessandro et al. (2016). The morphology of the Horizontal Branch in a CMD using the optical filters F555W and F814W is best produced by a population with a spread in Helium of Delta(Y) =0.025+/-0.005.
117 - R. Selier n LERMA 2011
The region of the Small Magellanic Cloud (SMC) with which this paper is concerned contains the highest concentration of IRAS/Spitzer sources, H I emission, and molecular clouds in this neighboring galaxy. However very few studies have been devoted to it, despite these signs of star formation. We present the first detailed study of the compact H II region N33 in the SMC by placing it in a wider context of massive star formation. Moreover, we show that N33 is a particularly interesting candidate for isolated massive star formation. This analysis is based mainly on optical ESO NTT observations, both imaging and spectroscopy, coupled with other archive data, notably Spitzer images (IRAC 3.6, 4.5, 5.8, and 8.0 mic) and 2MASS observations. We derive a number of physical characteristics of the compact H II region N33 for the first time. This gas and dust formation of 7.4 (2.2 pc) in diameter is powered by a massive star of spectral type O6.5-O7 V. The compact H II region belongs to a rare class of H II regions in the Magellanic Clouds, called high-excitation blobs (HEBs). We show that this H II region is not related to any star cluster. Specifically, we do not find any traces of clustering around N33 on scales larger than 10 (~ 3 pc). On smaller scales, there is a marginal stellar concentration, the low density of which, below the 3 sigma level, does not classify it as a real cluster. We also verify that N33 is not a member of any large stellar association. Under these circumstances, N33 is also therefore attractive because it represents a remarkable case of isolated massive-star formation in the SMC. Various aspects of the relevance of N33 to the topic of massive-star formation in isolation are discussed.
Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC602/N90 is characterized by the HII nebular ring N90 and the young cluster of pre--main-sequence (PMS) and early-type main sequence stars NGC602. We presen t a thorough cluster analysis of the stellar sample identified with HST/ACS camera in the region. We show that apart from the central cluster, low-mass PMS stars are congregated in thirteen additional small compact sub-clusters at the periphery of NGC602. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (~60%) of the total population being clustered, while the remaining is diffusely distributed in the inter-cluster area. From the corresponding color-magnitude diagrams we disentangle an age-difference of ~2.5Myr between NGC602 and the compact sub-clusters which appear younger. The diffuse PMS population appears to host stars as old as those in NGC602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings we propose a scenario, according to which the region NGC602/N90 experiences an active clustered star formation for the last ~5Myr. The central cluster NGC602 was formed first and rapidly started dissolving into its immediate ambient environment, possibly ejecting also massive stars found away from its center. Star formation continued in sub-clusters of a larger stellar agglomeration, introducing an age-spread of the order of 2.5Myr among the PMS populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا