ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance-based screening of porous materials for carbon capture

119   0   0.0 ( 0 )
 نشر من قبل Lev Sarkisov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Computational screening methods have been accelerating discovery of new materials and deployment of technologies based on them in many areas from batteries and alloys to photovoltaics and separation processes. In this review, we focus on post-combustion carbon capture using adsorption in porous materials. Prompted by unprecedented developments in material science, researchers in material engineering, molecular simulations, and process modelling have been interested in finding the best materials for carbon capture using energy efficient pressure-swing adsorption processes. Recent efforts have been directed towards development of new multiscale and performance-based screening workflows where we are able to go from the atomistic structure of an adsorbent to its equilibrium and transport properties for gas adsorption, and eventually to its separation performance in the actual process. The objective of this article is to review the current status of these emerging approaches, explain their significance for materials screening, while at the same time highlighting the existing pitfalls and challenges that limit their application in practice and industry. It is also the intention of this review to encourage cross-disciplinary collaborations for the development of more advanced screening methodologies. For this specific reason, we undertake an additional task of compiling and introducing all the elements that are needed for the development and operation of the performance-based screening workflows, including information about available materials databases, state-of-the-art molecular simulation and process modelling tools and methods, and the full list of data and parameters required for each stage.



قيم البحث

اقرأ أيضاً

Nano-materials, such as metal-organic frameworks, have been considered to capture CO$_2$. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perfor m a high-throughput screening for selective CO$_2$ capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO$_2$ from gaseous mixtures under low CO$_2$ pressures at 300 K and release it at ~450 K. CO$_2$ binding to elements involves hybridization of the metal d orbitals with the CO$_2$ $pi$ orbitals and CO$_2$-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO$_2$ capture materials with empty d orbitals and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO$_2$ capture and open a new path to explore CO$_2$ capture materials.
We review existing manifestations and prospects for ferroelectricity in electronically and optically active carbon-based materials. The focus point is the proposal for the electronic ferroelectricity in conjugated polymers from the family of substitu ted polyacetylenes. The attractive feature of synthetic organic ferroelectrics is a very high polarizability coming from redistribution of the electronic density, rather than from conventional displacements of ions. Next fortunate peculiarity is the symmetry determined predictable design of perspective materials. The macroscopic electric polarization follows ultimately from combination of two types of a microscopic symmetry breaking which are ubiquitous to qusi-1D electronic systems. The state supports anomalous quasi-particles - microscopic solitons, carrying non-integer electric charges, which here play the role of nano-scale nucleus of ferroelectric domain walls. Their spectroscopic features in optics can interfere with low-frequency ferroelectric repolarization providing new accesses and applications. In addition to already existing electronic ferroelectricity in organic crystals and donor-acceptor chains, we point to a class of conducting polymers and may be also to nano-ribbons of the graphene where such a state can be found. These proposals may lead to potential applications in modern intensive searches of carbon ferroelectrics.
We introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between $sigma$ and $S$ based on the complex ity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors and Zintl phases. We find an efficient screening using this transport function. The EFF identifies known high performance $p$- and $n$-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.
Shock wave reaction results in various characteristic regimes in porous material. The geometrical and topological properties of these regimes are highly concerned in practical applications. Via the morphological analysis to characteristic regimes wit h high temperature, we investigate the thermodynamics of shocked porous materials whose mechanical properties cover a wide range from hyperplasticity to elasticity. It is found that, under fixed shock strength, the total fractional area $A$ of the high-temperature regimes with $T geq T_{th}$ and its saturation value first increase, then decrease with the increasing of the initial yield $sigma_{Y0}$, where $T_{th}$ is a given threshold value of temperature $T$. In the shock-loading procedure, the fractional area $A(t)$ may show the same behavior if $T_{th}$ and $sigma_{Y0}$ are chosen appropriately. Under the same $A(t)$ behavior, $T_{th}$ first increases then decreases with $sigma_{Y0}$. At the maximum point $sigma_{Y0M}$, the shock wave contributes the maximum plastic work. Around $sigma_{Y0M}$, two materials with different mechanical properties may share the same $A(t)$ behavior even for the same $T_{th}$. The characteristic regimes in the material with the larger $sigma_{Y0}$ are more dispersed.
Porous carbonaceous materials have many important industrial applications including energy storage, water purification, and adsorption of volatile organic compounds. Most of their applications rely upon the adsorption of molecules or ions within the interior pore volume of the carbon particles. Understanding the behaviour and properties of adsorbate species on the molecular level is therefore key for optimising porous carbon materials, but this is very challenging owing to the complexity of the disordered carbon structure and the presence of multiple phases in the system. In recent years, NMR spectroscopy has emerged as one of the few experimental techniques that can resolve adsorbed species from those outside the pore network. Adsorbed, or in-pore species give rise to resonances that appear at lower chemical shifts compared to their free (or ex-pore) counterparts. This shielding effect arises primarily due to ring currents in the carbon structure in the presence of a magnetic field, such that the observed chemical shift differences upon adsorption are nucleus-independent to a first approximation. Theoretical modelling has played an important role in rationalising and explaining these experimental observations. Together, experiments and simulations have enabled a large amount of information to be gained on the adsorption and diffusion of adsorbed species, as well as on the structural and magnetic properties of the porous carbon adsorbent. Here, we review the methodological developments and applications of NMR spectroscopy and related modelling in this field, and provide perspectives on possible future applications and research directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا