ﻻ يوجد ملخص باللغة العربية
The Natural Questions (NQ) benchmark set brings new challenges to Machine Reading Comprehension: the answers are not only at different levels of granularity (long and short), but also of richer types (including no-answer, yes/no, single-span and multi-span). In this paper, we target at this challenge and handle all answer types systematically. In particular, we propose a novel approach called Reflection Net which leverages a two-step training procedure to identify the no-answer and wrong-answer cases. Extensive experiments are conducted to verify the effectiveness of our approach. At the time of paper writing (May.~20,~2020), our approach achieved the top 1 on both long and short answer leaderboard, with F1 scores of 77.2 and 64.1, respectively.
In this paper, we present a novel approach to machine reading comprehension for the MS-MARCO dataset. Unlike the SQuAD dataset that aims to answer a question with exact text spans in a passage, the MS-MARCO dataset defines the task as answering a que
This paper presents a novel method to generate answers for non-extraction machine reading comprehension (MRC) tasks whose answers cannot be simply extracted as one span from the given passages. Using a pointer network-style extractive decoder for suc
Neural network-based methods represent the state-of-the-art in question generation from text. Existing work focuses on generating only questions from text without concerning itself with answer generation. Moreover, our analysis shows that handling ra
How can we generate concise explanations for multi-hop Reading Comprehension (RC)? The current strategies of identifying supporting sentences can be seen as an extractive question-focused summarization of the input text. However, these extractive exp
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual mach