ﻻ يوجد ملخص باللغة العربية
We predict the emergence of turbulent scaling in the quench dynamics of the two-dimensional Heisenberg model for a wide range of initial conditions and model parameters. In the isotropic Heisenberg model, we find that the spin-spin correlation function exhibits universal scaling consistent with a turbulent energy cascade. When the spin rotational symmetry is broken by an easy-plane exchange anisotropy, we find a dual cascade of energy and an emergent conserved charge associated to transverse magnetization fluctuations. The scaling exponents are estimated analytically and agree with numerical simulations using phase space methods. We also define the space of initial conditions (as a function of energy, magnetization, and spin number $S$) that lead to a turbulent cascade. The universal character of the cascade, insensitive to microscopic details or initial conditions, suggests that turbulence in spin systems can be broadly realized in cold atom and solid-state experiments.
We find the statistical weight of excitations at long times following a quench in the Kondo problem. The weights computed are directly related to the overlap between initial and final states that are, respectively, states close to the Kondo ground st
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known
We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1 dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that th
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length
Quantum entanglement and its main quantitative measures, the entanglement entropy and entanglement negativity, play a central role in many body physics. An interesting twist arises when the system considered has symmetries leading to conserved quanti