ﻻ يوجد ملخص باللغة العربية
A stealth de Sitter solution in scalar-tensor theories has an exact de Sitter background metric and a nontrivial scalar field profile. Recently, in the context of Degenerate Higher-Order Scalar-Tensor (DHOST) theories it was shown that stealth de Sitter solutions suffer from either infinite strong coupling or gradient instability for scalar field perturbations. The sound speed squared is either vanishing or negative. In the first case, the strong coupling scale is zero and thus lower than the energy scale of any physical phenomena. From the viewpoint of effective field theory, this issue is naturally resolved by introducing a controlled detuning of the degeneracy condition dubbed scordatura, recovering a version of ghost condensation. In this paper we construct a viable dark energy model in the scordatura DHOST theory based on a stealth cosmological solution, in which the metric is the same as in the standard $Lambda$CDM model and the scalar field profile is linearly time-dependent. We show that the scordatura mechanism resolves the strong coupling and gradient instability. Further, we find that the scordatura is also necessary to make the quasi-static limit well-defined, which implies that the subhorizon observables are inevitably affected by the scordatura. We derive the effective gravitational coupling and the correction to the friction term for the subhorizon evolution of the linear dark matter energy density contrast as well as the Weyl potential and the gravitational slip parameter. In the absence of the scordatura, the quasi-static approximation would break down at all scales around stealth cosmological solutions even if the issue of the infinite strong coupling is unjustly disregarded. Therefore previous estimations of the subhorizon evolution of matter density contrast in modified gravity in the literature need to be revisited by taking into account the scordatura effect.
We investigate the structure formation in the effective field theory of the holographic dark energy. The equation of motion for the energy contrast $delta_m$ of the cold dark matter is the same as the one in the general relativity up to the leading o
We present a new class of nonsingular bounce cosmology free from instabilities, using a single scalar field coupled to gravity within the framework of the Degenerate Higher-Order Scalar-Tensor (DHOST) theories. In this type of scenarios, the gradient
We improve the DHOST Genesis proposed in cite{Ilyas:2020zcb}, such that the near scale invariant scalar power spectrum can be generated from the model itself, without involking extra mechanism like a string gas. Besides, the superluminality problem o
Studying the effects of dark energy and modified gravity on cosmological scales has led to a great number of physical models being developed. The effective field theory (EFT) of cosmic acceleration allows an efficient exploration of this large model
In quadratic-order degenerate higher-order scalar-tensor (DHOST) theories compatible with gravitational-wave constraints, we derive the most general Lagrangian allowing for tracker solutions characterized by $dot{phi}/H^p={rm constant}$, where $dot{p