We investigate the mechanical response of jammed packings of repulsive, frictionless spherical particles undergoing isotropic compression. Prior simulations of the soft-particle model, where the repulsive interactions scale as a power-law in the interparticle overlap with exponent $alpha$, have found that the ensemble-averaged shear modulus $langle G rangle$ increases with pressure $P$ as $sim P^{(alpha-3/2)/(alpha-1)}$ at large pressures. However, a deep theoretical understanding of this scaling behavior is lacking. We show that the shear modulus of jammed packings of frictionless, spherical particles has two key contributions: 1) continuous variations as a function of pressure along geometrical families, for which the interparticle contact network does not change, and 2) discontinuous jumps during compression that arise from changes in the contact network. We show that the shear modulus of the first geometrical family for jammed packings can be collapsed onto a master curve: $G^{(1)}/G_0 = (P/P_0)^{(alpha-2)/(alpha-1)} - P/P_0$, where $P_0 sim N^{-2(alpha-1)}$ is a characteristic pressure that separates the two power-law scaling regions and $G_0 sim N^{-2(alpha-3/2)}$. Deviations from this form can occur when there is significant non-affine particle motion near changes in the contact network. We further show that $langle G (P)rangle$ is not simply a sum of two power-laws, but $langle G rangle sim (P/P_c)^a$, where $a approx (alpha -2)/(alpha-1)$ in the $P rightarrow 0$ limit and $langle G rangle sim (P/P_c)^b$, where $b gtrsim (alpha -3/2)/(alpha-1)$ above a characteristic pressure $P_c$. In addition, the magnitudes of both contributions to $langle Grangle$ from geometrical families and changes in the contact network remain comparable in the large-system limit for $P >P_c$.