ﻻ يوجد ملخص باللغة العربية
Product group unification is an attractive alternative to simple grand unification. It solves the infamous doublet-triplet splitting problem and the dimension-5 proton decay problems without introducing any fine-tuning. Furthermore, the matter multiplets are still embedded into unified SU(5) representations. In this paper, we discuss proton decay of the simplest product group unification model based on SU(5)XU(2)_H . We find that the minimal setup of the model has already been excluded by dimension-6 proton decay. We also show that a simple extension of the model, with naturally generated SU(5) incomplete multiplets, can rectify this problem. We find that the proton lifetime will be in reach of coming experiments like DUNE and Hyper-K, when the mass of the incomplete multiplet is associated with the Peccei-Quinn symmetry breaking. In this case, the dark matter may be an admixture of the Wino LSP and the axion.
We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be
Dark matter candidates and proton decay in a class of models based on the AdS/CFT correspondence are discussed. We show that the present bound on the proton decay lifetime is inconsistent with ${cal N} = 1$ SUSY, and strongly constrains ${cal N} = 0$
An analytical formalism, including RG running at two loop order, is used to link the supersymmetric and GUT spectra in any GUT model in which the three gauge couplings unify. In each specific GUT model, one can then fully explore the interplay betwee
We study the proton lifetime in the $SO(10)$ Grand Unified Theory (GUT), which has the left-right (LR) symmetric gauge theory below the GUT scale. In particular, we focus on the minimal model without the bi-doublet Higgs field in the LR symmetric mod
Post-sphaleron baryogenesis, a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand