ﻻ يوجد ملخص باللغة العربية
Today, the majority of the cosmic baryons in the Universe are not observed directly, leading to an issue of missing baryons at low redshift. Cosmological hydrodynamical simulations have indicated that a significant portion of them will be converted into the so-called Warm-Hot Intergalactic Medium (WHIM), with gas temperature ranging between 10$^5$-10$^7$K. While the cooler phase of this gas has been observed using O VI and Ne VIII absorbers at UV wavelengths, the hotter fraction detection relies mostly on observations of O VII and O VIII at X-ray wavelengths. Here, we target the forbidden line of [Fe XXI] $lambda$ 1354$unicode{x212B}$ which traces 10$^7$K gas at UV wavelengths, using more than one hundred high-spectral resolution (R$sim$49,000) and high signal to noise VLT/UVES quasar spectra, corresponding to over 600 hrs of VLT time observations. A stack of these at the position of known DLAs lead to a 5-$sigma$ limit of $mathrm{log[N([Fe,XXI])]<}$17.4 (${EW_{rest}<22}$m$unicode{x212B}$), three orders of magnitude higher than the expected column density of the WHIM $mathrm{log[N([Fe,XXI])]<}$14.5. This work proposes an alternative to X-ray detected 10$^7$K WHIM tracers, by targeting faint lines at UV wavelengths from the ground benefiting from higher instrumental throughput, enhanced spectral resolution, longer exposure times and increased number of targets. The number of quasar spectra required to reach this theoretical column density with future facilities including 4MOST, ELT/HIRES, MSE and the Spectroscopic Telescope appears challenging at present. Probing the missing baryons is essential to constrain the accretion and feedback processes which are fundamental to galaxy formation.
I present computations of the integrated column densities produced in the post-shock cooling layers and in the radiative precursors of partially-cooled fast shocks as a function of the shock age. The results are applicable to the shock-heated warm/ho
We assess the possibility to detect the warm-hot intergalactic medium (WHIM) in emission and to characterize its physical conditions and spatial distribution through spatially resolved X-ray spectroscopy, in the framework of the recently proposed DIO
The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas collapsing in large-scale filaments and probably harbours a substantial fraction of the baryons in the local Universe. Absorption-line measurements in the ultraviolet (UV) and in t
Several popular cosmological models predict that most of the baryonic mass in the local universe is located in filamentary and sheet-like structures associated with groups and clusters of galaxies. This gas is expected to be gravitationally heated to
We present our XMM-Newton RGS observations of X Comae, an AGN behind the Coma cluster. We detect absorption by NeIX and OVIII at the redshift of Coma with an equivalent width of 3.3+/-1.8 eV and 1.7+/-1.3 eV, respectively (90% confidence errors or 2.