ﻻ يوجد ملخص باللغة العربية
We consider a sub-class of the $f$-divergences satisfying a stronger convexity property, which we refer to as strongly convex, or $kappa$-convex divergences. We derive new and old relationships, based on convexity arguments, between popular $f$-divergences.
The divergence minimization problem plays an important role in various fields. In this note, we focus on differentiable and strictly convex divergences. For some minimization problems, we show the minimizer conditions and the uniqueness of the minimi
This paper is focused on $f$-divergences, consisting of three main contributions. The first one introduces integral representations of a general $f$-divergence by means of the relative information spectrum. The second part provides a new approach for
This paper is focused on derivations of data-processing and majorization inequalities for $f$-divergences, and their applications in information theory and statistics. For the accessibility of the material, the main results are first introduced witho
This paper studies forward and reverse projections for the R{e}nyi divergence of order $alpha in (0, infty)$ on $alpha$-convex sets. The forward projection on such a set is motivated by some works of Tsallis {em et al.} in statistical physics, and th
We consider online convex optimization (OCO) over a heterogeneous network with communication delay, where multiple workers together with a master execute a sequence of decisions to minimize the accumulation of time-varying global costs. The local dat