ترغب بنشر مسار تعليمي؟ اضغط هنا

Launching the VASCO citizen science project

455   0   0.0 ( 0 )
 نشر من قبل Lars Mattsson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Vanishing & Appearing Sources during a Century of Observations (VASCO) project investigates astronomical surveys spanning a 70 years time interval, searching for unusual and exotic transients. We present herein the VASCO Citizen Science Project, that uses three different approaches to the identification of unusual transients in a given set of candidates: hypothesis-driven, exploratory-driven and machine learning-driven (which is of particular benefit for SETI searches). To address the big data challenge, VASCO combines methods from the Virtual Observatory, a user-aided machine learning and visual inspection through citizen science. In this article, we demonstrate the citizen science project, the new and improved candidate selection process and give a progress report. We also present the VASCO citizen science network led by amateur astronomy associations mainly located in Algeria, Cameroon and Nigeria. At the moment of writing, the citizen science project has carefully examined 12,000 candidate image pairs in the data, and has so far identified 713 objects classified as vanished. The most interesting candidates will be followed up with optical and infrared imaging, together with the observations by the most potent radio telescopes.



قيم البحث

اقرأ أيضاً

248 - E. Solano , C. Rodrigo , R. Pulido 2013
This article describes a citizen-science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near-Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MP C) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image boundaries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the projects collaborators (the citizens) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3,226 registered users have made during the first fifteen months of the project more than 167,000 measurements which have improved the orbital elements of 551 NEAs (6% of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near-Earth asteroids.
Schneider et al. (2020) presented the discovery of WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5, which appear to be the first examples of extreme T-type subdwarfs (esdTs; metallicity <= -1 dex, T_eff <= 1400 K). Here we present new discove ries and follow-up of three T-type subdwarf candidates, with an eye toward expanding the sample of such objects with very low metallicity and extraordinarily high kinematics, properties that suggest membership in the Galactic halo. Keck/NIRES near-infrared spectroscopy of WISEA J155349.96+693355.2, a fast-moving object discovered by the Backyard Worlds: Planet 9 citizen science project, confirms that it is a mid-T subdwarf. With H_W2 = 22.3 mag, WISEA J155349.96+693355.2 has the largest W2 reduced proper motion among all spectroscopically confirmed L and T subdwarfs, suggesting that it may be kinematically extreme. Nevertheless, our modeling of the WISEA J155349.96+693355.2 near-infrared spectrum indicates that its metallicity is only mildly subsolar. In analyzing the J155349.96+693355.2 spectrum, we present a new grid of low-temperature, low-metallicity model atmosphere spectra. We also present the discoveries of two new esdT candidates, CWISE J073844.52-664334.6 and CWISE J221706.28-145437.6, based on their large motions and colors similar to those of the two known esdT objects. Finding more esdT examples is a critical step toward mapping out the spectral sequence and observational properties of this newly identified population.
We describe the current performance of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument on the Subaru telescope on Maunakea, Hawaii and present early science results for SCExAO coupled with the CHARIS integral field spectrograph. SCExAO now delivers H band Strehl ratios up to $sim$ 0.9 or better, extreme AO corrections for optically faint stars, and planet-to-star contrasts rivaling that of GPI and SPHERE. CHARIS yield high signal-to-noise detections and 1.1--2.4 $mu m$ spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We also show how recently published as well as unpublished observations of LkCa 15 lead to a re-evaluation of its claimed protoplanets. Finally, we briefly describe plans for a SCExAO-focused direct imaging campaign to directly image and characterize young exoplanets, planet-forming disks, and (later) mature planets in reflected light.
We provide a brief overview of the Galaxy Zoo and Zooniverse projects, including a short discussion of the history of, and motivation for, these projects as well as reviewing the science these innovative internet-based citizen science projects have p roduced so far. We briefly describe the method of applying en-masse human pattern recognition capabilities to complex data in data-intensive research. We also provide a discussion of the lessons learned from developing and running these community--based projects including thoughts on future applications of this methodology. This review is intended to give the reader a quick and simple introduction to the Zooniverse.
103 - Karen Masters , 2016
We investigate the development of scientific content knowledge of volunteers participating in online citizen science projects in the Zooniverse (www.zooniverse.org), including the astronomy projects Galaxy Zoo (www.galaxyzoo.org) and Planet Hunters ( www.planethunters.org). We use econometric methods to test how measures of project participation relate to success in a science quiz, controlling for factors known to correlate with scientific knowledge. Citizen scientists believe they are learning about both the content and processes of science through their participation. Wont dont directly test the latter, but we find evidence to support the former - that more actively engaged participants perform better in a project-specific science knowledge quiz, even after controlling for their general science knowledge. We interpret this as evidence of learning of science content inspired by participation in online citizen science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا