ﻻ يوجد ملخص باللغة العربية
Inspired by Rybaks multiple-time-step technique, jagged-time-step technique is proposed and applied to Fernandezs Explicit Robin-Neumann scheme. For some instances, numerical experiments demonstrate higher convergence orders and accuracy with lower computation cost as time and space get refined.
We consider a fully discrete loosely coupled scheme for incompressible fluid-structure interaction based on the time semi-discrete splitting method introduced in {emph{[Burman, Durst & Guzman, arXiv:1911.06760]}}. The splittling method uses a Robin-R
This work aims at providing some novel and practical ideas to improve accuracy of some partitioned algorithms, precisely Fernandezs Explicit Robin-Neumann and fully decoupled schemes, for the coupling of incompressible fluid with thin-walled structur
We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid-structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric mul
This paper continues to study the explicit two-stage fourth-order accurate time discretiza- tions [5, 7]. By introducing variable weights, we propose a class of more general explicit one-step two-stage time discretizations, which are different from t
We develop a novel iterative solution method for the incompressible Navier-Stokes equations with boundary conditions coupled with reduced models. The iterative algorithm is designed based on the variational multiscale formulation and the generalized-