ﻻ يوجد ملخص باللغة العربية
We revisit the covariant phase space formalism applied to gravitational theories with null boundaries, utilizing the most general boundary conditions consistent with a fixed null normal. To fix the ambiguity inherent in the Wald-Zoupas definition of quasilocal charges, we propose a new principle, based on holographic reasoning, that the flux be of Dirichlet form. This also produces an expression for the analog of the Brown-York stress tensor on the null surface. Defining the algebra of charges using the Barnich-Troessaert bracket for open subsystems, we give a general formula for the central -- or more generally, abelian -- extensions that appear in terms of the anomalous transformation of the boundary term in the gravitational action. This anomaly arises from having fixed a frame for the null normal, and we draw parallels between it and the holographic Weyl anomaly that occurs in AdS/CFT. As an application of this formalism, we analyze the near-horizon Virasoro symmetry considered by Haco, Hawking, Perry, and Strominger, and perform a systematic derivation of the fluxes and central charges. Applying the Cardy formula to the result yields an entropy that is twice the Bekenstein-Hawking entropy of the horizon. Motivated by the extended Hilbert space construction, we interpret this in terms of a pair of entangled CFTs associated with edge modes on either side of the bifurcation surface.
When two objects have gravitational interaction between them, they are no longer independent of each other. In fact, there exists gravitational correlation between these two objects. Inspired by E. Verlindes paper, we first calculate the entropy chan
We show that an $SL(2,R)_L times SL(2,R)_R$ Chern-Simons theory coupled to a source on a manifold with the topology of a disk correctly describes the entropy of the AdS$_3$ black hole. The resulting boundary WZNW theory leads to two copies of a twist
Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from u
We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserv
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute a