ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalies in gravitational charge algebras of null boundaries and black hole entropy

137   0   0.0 ( 0 )
 نشر من قبل Venkatesa Chandrasekaran
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the covariant phase space formalism applied to gravitational theories with null boundaries, utilizing the most general boundary conditions consistent with a fixed null normal. To fix the ambiguity inherent in the Wald-Zoupas definition of quasilocal charges, we propose a new principle, based on holographic reasoning, that the flux be of Dirichlet form. This also produces an expression for the analog of the Brown-York stress tensor on the null surface. Defining the algebra of charges using the Barnich-Troessaert bracket for open subsystems, we give a general formula for the central -- or more generally, abelian -- extensions that appear in terms of the anomalous transformation of the boundary term in the gravitational action. This anomaly arises from having fixed a frame for the null normal, and we draw parallels between it and the holographic Weyl anomaly that occurs in AdS/CFT. As an application of this formalism, we analyze the near-horizon Virasoro symmetry considered by Haco, Hawking, Perry, and Strominger, and perform a systematic derivation of the fluxes and central charges. Applying the Cardy formula to the result yields an entropy that is twice the Bekenstein-Hawking entropy of the horizon. Motivated by the extended Hilbert space construction, we interpret this in terms of a pair of entangled CFTs associated with edge modes on either side of the bifurcation surface.



قيم البحث

اقرأ أيضاً

93 - Dongshan He , Qing-yu Cai 2016
When two objects have gravitational interaction between them, they are no longer independent of each other. In fact, there exists gravitational correlation between these two objects. Inspired by E. Verlindes paper, we first calculate the entropy chan ge of a system when gravity does positive work on this system. Based on the concept of gravitational correlation entropy, we prove that the entropy of a Schwarzschild black hole originates from the gravitational correlations between the interior matters of the black hole. By analyzing the gravitational correlation entropies in the process of Hawking radiation in a general context, we prove that the reduced entropy of a black hole is exactly carried away by the radiation and the gravitational correlations between these radiating particles, and the entropy or information is conserved at all times during Hawking radiation. Finally, we attempt to give a unified description of the non-extensive black-hole entropy and the extensive entropy of ordinary matter.
100 - S. Fernando , F. Mansouri 2000
We show that an $SL(2,R)_L times SL(2,R)_R$ Chern-Simons theory coupled to a source on a manifold with the topology of a disk correctly describes the entropy of the AdS$_3$ black hole. The resulting boundary WZNW theory leads to two copies of a twist ed Kac-Moody algebra, for which the respective Virasoro algebras have the same central charge $c$ as the corresponding untwisted theory. But the eigenvalues of the respective $L_0$ operators are shifted. We show that the asymptotic density of states for this theory is, up to logarithmic corrections, the same as that obtained by Strominger using the asymptotic symmetry of Brown and Henneaux.
Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from u nit. Therefore the gravitational decoupling parameter governing three hairy black hole metrics is then bounded to a range wherein one can reliably emulate AdS/CFT with gravitational decoupled solutions, in the tensor vacuum regime.
We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserv e this phase space. This algebra is the semi-direct sum of diffeomorphisms on the two sphere and a nonabelian algebra of supertranslations that has some similarities to supertranslations at null infinity. By using the general prescription developed by Wald and Zoupas, we derive the localized charges of this algebra at cross sections of the null surface as well as the associated fluxes. Our analysis is covariant and applies to general non-stationary null surfaces. We also derive the global charges that generate the symmetries for event horizons, and show that these obey the same algebra as the linearized diffeomorphisms, without any central extension. Our results show that supertranslations play an important role not just at null infinity but at all null boundaries, including non-stationary event horizons. They should facilitate further investigations of whether horizon symmetries and conservation laws in black hole spacetimes play a role in the information loss problem, as suggested by Hawking, Perry, and Strominger.
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute a symptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u(1) current algebras and recover the surprisingly simple entropy formula $S=2pi (J_0^+ + J_0^-)$, where $J_0^pm$ are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا