ﻻ يوجد ملخص باللغة العربية
We study asynchronous finite sum minimization in a distributed-data setting with a central parameter server. While asynchrony is well understood in parallel settings where the data is accessible by all machines -- e.g., modifications of variance-reduced gradient algorithms like SAGA work well -- little is known for the distributed-data setting. We develop an algorithm ADSAGA based on SAGA for the distributed-data setting, in which the data is partitioned between many machines. We show that with $m$ machines, under a natural stochastic delay model with an mean delay of $m$, ADSAGA converges in $tilde{O}left(left(n + sqrt{m}kapparight)log(1/epsilon)right)$ iterations, where $n$ is the number of component functions, and $kappa$ is a condition number. This complexity sits squarely between the complexity $tilde{O}left(left(n + kapparight)log(1/epsilon)right)$ of SAGA textit{without delays} and the complexity $tilde{O}left(left(n + mkapparight)log(1/epsilon)right)$ of parallel asynchronous algorithms where the delays are textit{arbitrary} (but bounded by $O(m)$), and the data is accessible by all. Existing asynchronous algorithms with distributed-data setting and arbitrary delays have only been shown to converge in $tilde{O}(n^2kappalog(1/epsilon))$ iterations. We empirically compare on least-squares problems the iteration complexity and wallclock performance of ADSAGA to existing parallel and distributed algorithms, including synchronous minibatch algorithms. Our results demonstrate the wallclock advantage of variance-reduced asynchronous approaches over SGD or synchronous approaches.
One of the most widely used methods for solving large-scale stochastic optimization problems is distributed asynchronous stochastic gradient descent (DASGD), a family of algorithms that result from parallelizing stochastic gradient descent on distrib
Motivated by large-scale optimization problems arising in the context of machine learning, there have been several advances in the study of asynchronous parallel and distributed optimization methods during the past decade. Asynchronous methods do not
We introduce and analyze stochastic optimization methods where the input to each gradient update is perturbed by bounded noise. We show that this framework forms the basis of a unified approach to analyze asynchronous implementations of stochastic op
Various bias-correction methods such as EXTRA, gradient tracking methods, and exact diffusion have been proposed recently to solve distributed {em deterministic} optimization problems. These methods employ constant step-sizes and converge linearly to
Stochastic gradient methods (SGMs) are the predominant approaches to train deep learning models. The adapti