ترغب بنشر مسار تعليمي؟ اضغط هنا

NGTS-12b: A sub-Saturn mass transiting exoplanet in a 7.53 day orbit

379   0   0.0 ( 0 )
 نشر من قبل Edward Bryant
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of the transiting exoplanet NGTS-12b by the Next Generation Transit Survey (NGTS). The host star, NGTS-12, is a V=12.38 mag star with an effective temperature of T$_{rm eff}$=$5690pm130$ K. NGTS-12b orbits with a period of $P=7.53$d, making it the longest period planet discovered to date by the main NGTS survey. We verify the NGTS transit signal with data extracted from the TESS full-frame images, and combining the photometry with radial velocity measurements from HARPS and FEROS we determine NGTS-12b to have a mass of $0.208pm0.022$ M$_{J}$ and a radius of $1.048pm0.032$ R$_{J}$. NGTS-12b sits on the edge of the Neptunian desert when we take the stellar properties into account, highlighting the importance of considering both the planet and star when studying the desert. The long period of NGTS-12b combined with its low density of just $0.223pm0.029$ g cm$^{-3}$ make it an attractive target for atmospheric characterization through transmission spectroscopy with a Transmission Spectroscopy Metric of 89.4.



قيم البحث

اقرأ أيضاً

We present the discovery of NGTS-19b, a high mass transiting brown dwarf discovered by the Next Generation Transit Survey (NGTS). We investigate the system using follow up photometry from the South African Astronomical Observatory, as well as sector 11 TESS data, in combination with radial velocity measurements from the CORALIE spectrograph to precisely characterise the system. We find that NGTS-19b is a brown dwarf companion to a K-star, with a mass of $69.5 ^{+5.7}_{-5.4}$ M$_{Jup}$ and radius of $1.034 ^{+0.055}_{-0.053}$ R$_{Jup}$. The system has a reasonably long period of 17.84 days, and a high degree of eccentricity of $0.3767 ^{+0.0061}_{-0.0061}$. The mass and radius of the brown dwarf imply an age of $0.46 ^{+0.26}_{-0.15}$ Gyr, however this is inconsistent with the age determined from the host star SED, suggesting that the brown dwarf may be inflated. This is unusual given that its large mass and relatively low levels of irradiation would make it much harder to inflate. NGTS-19b adds to the small, but growing number of brown dwarfs transiting main sequence stars, and is a valuable addition as we begin to populate the so called brown dwarf desert.
154 - J. D. Hartman 2009
We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V=12.8 K4 dwarf GSC 03033-00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch Tc = 2454419.19556 +- 0.00020 (BJD) and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 Msun, radius of 0.70 +- ^0.02_0.01 Rsun, effective temperature 4650 +- 60 K and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 MJup, and a radius of 0.959 +- ^0.029_0.021 RJup yielding a mean density of 0.295 +- 0.025 g cm^-3. Comparing these observations with recent theoretical models we find that HAT-P-12b is consistent with a ~ 1-4.5 Gyr, mildly irradiated, H/He dominated planet with a core mass Mc <~ 10 Mearth. HAT-P-12b is thus the least massive H/He dominated gas giant planet found to date. This record was previously held by Saturn.
80 - Richard G. West 2018
We report the discovery of NGTS-4b, a sub-Neptune-sized planet transiting a 13th magnitude K-dwarf in a 1.34d orbit. NGTS-4b has a mass M=$20.6pm3.0$M_E and radius R=$3.18pm0.26$R_E, which places it well within the so-called Neptunian Desert. The mea n density of the planet ($3.45pm0.95$g/cm^3) is consistent with a composition of 100% H$_2$O or a rocky core with a volatile envelope. NGTS-4b is likely to suffer significant mass loss due to relatively strong EUV/X-ray irradiation. Its survival in the Neptunian desert may be due to an unusually high core mass, or it may have avoided the most intense X-ray irradiation by migrating after the initial activity of its host star had subsided. With a transit depth of $0.13pm0.02$%, NGTS-4b represents the shallowest transiting system ever discovered from the ground, and is the smallest planet discovered in a wide-field ground-based photometric survey.
We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright ($V=8.0$) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with $T_{rm eff} = 5370pm51$ K, $M_{*} = 1.438_{-0.052} ^{+0.061} M_{odot}$, $R_{*} = 2.72_{-0.17}^{+0.21} R_{odot}$, log $g_*= 3.727_{-0.046}^{+0.040}$, and [Fe/H]$ = 0.180pm0.075$. The planet is a low-mass gas giant in a $P = 4.736529pm0.00006$ day orbit, with $M_{P} = 0.195pm0.018 M_J$, $R_{P}= 1.37_{-0.12}^{+0.15} R_J$, $rho_{P} = 0.093_{-0.024}^{+0.028}$ g cm$^{-3}$, surface gravity log ${g_{P}} = 2.407_{-0.086}^{+0.080}$, and equilibrium temperature $T_{eq} = 1712_{-46}^{+51}$ K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.
160 - F. Bouchy , L. Hebb , I. Skillen 2010
We report the discovery of WASP-21b, a new transiting exoplanet discovered by the Wide Angle Search for Planets (WASP) Consortium and established and characterized with the FIES, SOPHIE, CORALIE and HARPS fiber-fed echelle spectrographs. A 4.3-d peri od, 1.1% transit depth and 3.4-h duration are derived for WASP-21b using SuperWASP-North and high precision photometric observations at the Liverpool Telescope. Simultaneous fitting to the photometric and radial velocity data with a Markov Chain Monte Carlo procedure leads to a planet in the mass regime of Saturn. With a radius of 1.07 R_Jup and mass of 0.30 M_Jup, WASP-21b has a density close to 0.24 rho_Jup corresponding to the distribution peak at low density of transiting gaseous giant planets. With a host star metallicity [Fe/H] of -0.46, WASP-21b strengthens the correlation between planetary density and host star metallicity for the five known Saturn-like transiting planets. Furthermore there are clear indications that WASP-21b is the first transiting planet belonging to the thick disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا