ﻻ يوجد ملخص باللغة العربية
Low-frequency quasi-periodic oscillations (LFQPOs) are commonly found in black hole X-ray binaries, and their origin is still under debate. The properties of LFQPOs at high energies (above 30 keV) are closely related to the nature of the accretion flow in the innermost regions, and thus play a crucial role in critically testing various theoretical models. The Hard X-ray Modulation Telescope (Insight-HXMT) is capable of detecting emissions above 30 keV, and is therefore an ideal instrument to do so. Here we report the discovery of LFQPOs above 200 keV in the new black hole MAXI J1820+070 in the X-ray hard state, which allows us to understand the behaviours of LFQPOs at hundreds of kiloelectronvolts. The phase lag of the LFQPO is constant around zero below 30 keV, and becomes a soft lag (that is, the high-energy photons arrive first) above 30 keV. The soft lag gradually increases with energy and reaches ~0.9s in the 150-200 keV band. The detection at energies above 200 keV, the large soft lag and the energy-related behaviors of the LFQPO pose a great challenge for most currently existing models, but suggest that the LFQPO probably originates from the precession of a small-scale jet.
A black hole X-ray binary produces hard X-ray radiation from its corona and disk when the accreting matter heats up. During an outburst, the disk and corona co-evolves with each other. However, such an evolution is still unclear in both its geometry
We report the discovery of the correlated optical/X-ray low-frequency quasi-periodic oscillations (QPOs) in black hole binary SWIFT J1753.5-0127. The phase lag between two light-curves at the QPO frequency is close to zero. This result puts strong co
We report the first half-year monitoring of the new Galactic black hole candidate MAXI J1348-630, discovered on 2019 January 26 with the Gas Slit Camera (GSC) on-board MAXI. During the monitoring period, the source exhibited two outburst peaks, where
AT2019wey is a Galactic low mass X-ray binary with a candidate black hole accretor first discovered as an optical transient by ATLAS in December 2019. It was then associated with an X-ray source discovered by SRG in March 2020. After observing a brig
We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT, NICER and MAXI. This outburst can be classfied roughly into four differen