ﻻ يوجد ملخص باللغة العربية
The Cloud infrastructure offers to end users a broad set of heterogenous computational resources using the pay-as-you-go model. These virtualized resources can be provisioned using different pricing models like the unreliable model where resources are provided at a fraction of the cost but with no guarantee for an uninterrupted processing. However, the enormous gamut of opportunities comes with a great caveat as resource management and scheduling decisions are increasingly complicated. Moreover, the presented uncertainty in optimally selecting resources has also a negatively impact on the quality of solutions delivered by scheduling algorithms. In this paper, we present a dynamic scheduling algorithm (i.e., the Uncertainty-Driven Scheduling - UDS algorithm) for the management of scientific workflows in Cloud. Our model minimizes both the makespan and the monetary cost by dynamically selecting reliable or unreliable virtualized resources. For covering the uncertainty in decision making, we adopt a Fuzzy Logic Controller (FLC) to derive the pricing model of the resources that will host every task. We evaluate the performance of the proposed algorithm using real workflow applications being tested under the assumption of different probabilities regarding the revocation of unreliable resources. Numerical results depict the performance of the proposed approach and a comparative assessment reveals the position of the paper in the relevant literature.
Workflow decision making is critical to performing many practical workflow applications. Scheduling in edge-cloud environments can address the high complexity of workflow applications, while decreasing the data transmission delay between the cloud an
In this paper, we study the market-oriented online bi-objective service scheduling problem for pleasingly parallel jobs with variable resources in cloud environments, from the perspective of SaaS (Software-as-as-Service) providers who provide job-exe
Cloud Service Providers (CSPs) offer a wide variety of scalable, flexible, and cost-efficient services to cloud users on demand and pay-per-utilization basis. However, vast diversity in available cloud service providers leads to numerous challenges f
Cloud computing is a newly emerging distributed system which is evolved from Grid computing. Task scheduling is the core research of cloud computing which studies how to allocate the tasks among the physical nodes, so that the tasks can get a balance
Kubernetes (k8s) has the potential to merge the distributed edge and the cloud but lacks a scheduling framework specifically for edge-cloud systems. Besides, the hierarchical distribution of heterogeneous resources and the complex dependencies among