ﻻ يوجد ملخص باللغة العربية
Classical open systems with balanced gain and loss, i.e. parity-time ($mathcal{PT}$) symmetric systems, have attracted tremendous attention over the past decade. Their exotic properties arise from exceptional point (EP) degeneracies of non-Hermitian Hamiltonians that govern their dynamics. In recent years, increasingly sophisticated models of $mathcal{PT}$-symmetric systems with time-periodic (Floquet) driving, time-periodic gain and loss, and time-delayed coupling have been investigated, and such systems have been realized across numerous platforms comprising optics, acoustics, mechanical oscillators, optomechanics, and electrical circuits. Here, we introduce a $mathcal{PT}$-symmetric (balanced gain and loss) system with memory, and investigate its dynamics analytically and numerically. Our model consists of two coupled $LC$ oscillators with positive and negative resistance, respectively. We introduce memory by replacing either the resistor with a memristor, or the coupling inductor with a meminductor, and investigate the circuit energy dynamics as characterized by $mathcal{PT}$-symmetric or $mathcal{PT}$-symmetry broken phases. Due to the resulting nonlinearity, we find that energy dynamics depend on the sign and strength of initial voltages and currents, as well as the distribution of initial circuit energy across its different components. Surprisingly, at strong inputs, the system exhibits self-organized Floquet dynamics, including $mathcal{PT}$-symmetry broken phase at vanishingly small dissipation strength. Our results indicate that $mathcal{PT}$-symmetric systems with memory show a rich landscape.
In this work, we propose a PT-symmetric coupler whose arms are birefringent waveguides as a realistic physical model which leads to a so-called quadrimer i.e., a four complex field setting. We seek stationary solutions of the resulting linear and non
We explore the photon transfer in the nonlinear parity-time-symmetry system of two coupled cavities, which contains nonlinear gain and loss dependent on the intracavity photons. Analytical solution to the steady state gives a saturated gain, which sa
Non-Hermitian systems with parity-time ($mathcal{PT}$) symmetry give rise to exceptional points (EPs) with exceptional properties that arise due to the coalescence of eigenvectors. Such systems have been extensively explored in the classical domain,
Non-Hermitian Hamiltonians play an important role in many branches of physics, from quantum mechanics to acoustics. In particular, the realization of PT, and more recently -- anti-PT symmetries in optical systems has proved to be of great value from
We show that the no-signaling principle can be violated with classical inseparable beams in the presence of a parity-time (PT) symmetric subsystem. Thus, the problems associated to PT-symmetric quantum theories recently discovered by Lee et al. [Phys