ﻻ يوجد ملخص باللغة العربية
In this paper, we focus on generating training examples for few-shot intents in the realistic imbalanced scenario. To build connections between existing many-shot intents and few-shot intents, we consider an intent as a combination of a domain and an action, and propose a composed variational natural language generator (CLANG), a transformer-based conditional variational autoencoder. CLANG utilizes two latent variables to represent the utterances corresponding to two different independent parts (domain and action) in the intent, and the latent variables are composed together to generate natural examples. Additionally, to improve the generator learning, we adopt the contrastive regularization loss that contrasts the in-class with the out-of-class utterance generation given the intent. To evaluate the quality of the generated utterances, experiments are conducted on the generalized few-shot intent detection task. Empirical results show that our proposed model achieves state-of-the-art performances on two real-world intent detection datasets.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical mo
Natural Language Generation (NLG) is a key component in a task-oriented dialogue system, which converts the structured meaning representation (MR) to the natural language. For large-scale conversational systems, where it is common to have over hundre
Few-shot natural language processing (NLP) refers to NLP tasks that are accompanied with merely a handful of labeled examples. This is a real-world challenge that an AI system must learn to handle. Usually we rely on collecting more auxiliary informa
Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired informat
Some NLP tasks can be solved in a fully unsupervised fashion by providing a pretrained language model with task descriptions in natural language (e.g., Radford et al., 2019). While this approach underperforms its supervised counterpart, we show in th