ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing oxygen atoms in perovskite and pyrochlore oxides using ADF-STEM at a resolution of a few tens of picometers

82   0   0.0 ( 0 )
 نشر من قبل Richard Beanland
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an aberration corrected scanning transmission electron microscopy (ac-STEM) analysis of the perovskite (LaFeO3) and pyrochlore (Yb2Ti2O7 and Pr2Zr2O7) oxides and demonstrate that both the shape and contrast of visible atomic columns in annular dark-field (ADF) images are sensitive to the presence of nearby atoms of low atomic number (e.g. oxygen). We show that point defects (e.g. oxygen vacancies), which are invisible - or difficult to observe due to limited sensitivity - in X-ray and neutron diffraction measurements, are the origin of the complex magnetic ground state of pyrochlore oxides. In addition, we present, for the first time, a method by which light atoms can be resolved in quantitative ADF-STEM images. Using this method, we resolved oxygen atoms in perovskite and pyrochlore oxides.



قيم البحث

اقرأ أيضاً

Nanotechnology research requires the routine use of characterization methods with high spatial resolution. These experiments are rather costly, not only from the point of view of the expensive microscopes, but also considering the need of a rather sp ecialized equipment operator. Here, we describe the construction of an inexpensive and simple device that allows the analysis of nanoparticle in a FEG-SEM; images can be generated at high magnifications (ex. x500.000) and with nanometric resolution. It is based on the acquisition of transmitted electrons annular dark field (TE-ADF) signal; the systems can carry up to 16 TEM samples and, it is compatible with SEM sample exchange air-lock. Performance test have shown the measured ADF signal showed the atomic number and thickness dependence for transition metal nanoparticle about 10 nm in diameter. Also, the signal quality is high enough that the determination of the histogram of size distribution can be performed using a conventional image processing software, for gold particles in the range of 2-10 nm in diameter. The developed ADF device allows a much faster and cheaper high spatial resolution imaging of nanoparticle samples for routine morphological characterization and, provides an invaluable high throughput tool for an efficient sample screening.
Competitive mechanisms contribute to image contrast from dislocations in annular dark field scanning transmission electron microscopy ADF STEM. A clear theoretical understanding of the mechanisms underlying the ADF STEM contrast is therefore essentia l for correct interpretation of dislocation images. This paper reports on a systematic study of the ADF STEM contrast from dislocations in a GaN specimen, both experimentally and computationally. Systematic experimental ADF STEM images of the edge character dislocations revealed a number of characteristic contrast features that are shown to depend on both the angular detection range and specific position of the dislocation in the sample. A theoretical model based on electron channelling and Bloch wave scattering theories, supported by multislice simulations using Grillo s strain channelling equation, is proposed to elucidate the physical origin of such complex contrast phenomena.
With their broad range of magnetic, electronic and structural properties, transition metal perovskite oxides ABO3 have long served as a platform for testing condensed matter theories. In particular, their insulating character - found in most compound s - is often ascribed to dynamical electronic correlations through the celebrated Mott-Hubbard mechanism where gaping arises from a uniform, symmetry-preserving electron repulsion mechanism. However, structural distortions are ubiquitous in perovskites and their relevance with respect to dynamical correlations in producing this rich array of properties remains an open question. Here, we address the origin of band gap opening in the whole family of 3d perovskite oxides. We show that a single-determinant mean-field approach such as density functional theory (DFT) successfully describes the structural, magnetic and electronic properties of the whole series, at low and high temperatures. We find that insulation occurs via energy-lowering crystal symmetry reduction (octahedral rotations, Jahn-Teller and bond disproportionation effects), as well as intrinsic electronic instabilities, all lifting orbital degeneracies. Our work therefore suggests that whereas ABO3 oxides may be complicated, they are not necessarily strongly correlated. It also opens the way towards systematic investigations of doping and defect physics in perovskites, essential for the full realization of oxide-based electronics.
High-temperature electronic materials are in constant demand as the required operational range for various industries increases. Here we design $(A,A^prime)B_2$O$_6$ perovskite oxides with [111] ``rock salt $A$-site cation order and predict them to b e potential high-temperature piezoelectric materials. By selecting bulk perovskites which have a tendency towards only out-of-phase $B$O$_6$ rotations, we avoid possible staggered ferroelectric to paraelectric phase transitions while also retaining non-centrosymmetric crystal structures necessary for ferro- and piezoelectricity. Using density functional theory calculations, we show that (La,Pr)Al$_2$O$_6$ and (Ce,Pr)Al$_2$O$_6$ display spontaneous polarizations in their polar ground state structures; we also compute the dielectric and piezoelectric constants for each phase. Additionally, we predict the critical phase transition temperatures for each material from first-principles to demonstrate that the piezoelectric responses, which are comparable to traditional lead-free piezoelectrics, should persist to high temperature. These features make the rock salt $A$-site ordered aluminates candidates for high-temperature sensors, actuators, or other electronic devices.
Many transition metal oxides (TMOs) are Mott insulators due to strong Coulomb repulsion between electrons, and exhibit metal-insulator transitions (MITs) whose mechanisms are not always fully understood. Unlike most TMOs, minute doping in CaMnO3 indu ces a metallic state without any structural transformations. This material is thus an ideal platform to explore band formation through the MIT. Here, we use angle-resolved photoemission spectroscopy to visualize how electrons delocalize and couple to phonons in CaMnO3. We show the development of a Fermi surface where mobile electrons coexist with heavier carriers, strongly coupled polarons. The latter originate from a boost of the electron-phonon interaction (EPI). This finding brings to light the role that the EPI can play in MITs even caused by purely electronic mechanisms. Our discovery of the EPI-induced dichotomy of the charge carriers explains the transport response of Ce-doped CaMnO3 and suggests strategies to engineer quantum matter from TMOs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا