ترغب بنشر مسار تعليمي؟ اضغط هنا

TRECVID 2019: An Evaluation Campaign to Benchmark Video Activity Detection, Video Captioning and Matching, and Video Search & Retrieval

55   0   0.0 ( 0 )
 نشر من قبل Asad Anwar Butt
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The TREC Video Retrieval Evaluation (TRECVID) 2019 was a TREC-style video analysis and retrieval evaluation, the goal of which remains to promote progress in research and development of content-based exploitation and retrieval of information from digital video via open, metrics-based evaluation. Over the last nineteen years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. TRECVID has been funded by NIST (National Institute of Standards and Technology) and other US government agencies. In addition, many organizations and individuals worldwide contribute significant time and effort. TRECVID 2019 represented a continuation of four tasks from TRECVID 2018. In total, 27 teams from various research organizations worldwide completed one or more of the following four tasks: 1. Ad-hoc Video Search (AVS) 2. Instance Search (INS) 3. Activities in Extended Video (ActEV) 4. Video to Text Description (VTT) This paper is an introduction to the evaluation framework, tasks, data, and measures used in the workshop.



قيم البحث

اقرأ أيضاً

The TREC Video Retrieval Evaluation (TRECVID) is a TREC-style video analysis and retrieval evaluation with the goal of promoting progress in research and development of content-based exploitation and retrieval of information from digital video via op en, metrics-based evaluation. Over the last twenty years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. TRECVID has been funded by NIST (National Institute of Standards and Technology) and other US government agencies. In addition, many organizations and individuals worldwide contribute significant time and effort. TRECVID 2020 represented a continuation of four tasks and the addition of two new tasks. In total, 29 teams from various research organizations worldwide completed one or more of the following six tasks: 1. Ad-hoc Video Search (AVS), 2. Instance Search (INS), 3. Disaster Scene Description and Indexing (DSDI), 4. Video to Text Description (VTT), 5. Activities in Extended Video (ActEV), 6. Video Summarization (VSUM). This paper is an introduction to the evaluation framework, tasks, data, and measures used in the evaluation campaign.
We propose a high-level concept word detector that can be integrated with any video-to-language models. It takes a video as input and generates a list of concept words as useful semantic priors for language generation models. The proposed word detect or has two important properties. First, it does not require any external knowledge sources for training. Second, the proposed word detector is trainable in an end-to-end manner jointly with any video-to-language models. To maximize the values of detected words, we also develop a semantic attention mechanism that selectively focuses on the detected concept words and fuse them with the word encoding and decoding in the language model. In order to demonstrate that the proposed approach indeed improves the performance of multiple video-to-language tasks, we participate in four tasks of LSMDC 2016. Our approach achieves the best accuracies in three of them, including fill-in-the-blank, multiple-choice test, and movie retrieval. We also attain comparable performance for the other task, movie description.
This report describes our solution for the VATEX Captioning Challenge 2020, which requires generating descriptions for the videos in both English and Chinese languages. We identified three crucial factors that improve the performance, namely: multi-v iew features, hybrid reward, and diverse ensemble. Based on our method of VATEX 2019 challenge, we achieved significant improvements this year with more advanced model architectures, combination of appearance and motion features, and careful hyper-parameters tuning. Our method achieves very competitive results on both of the Chinese and English video captioning tracks.
The explosion of video data on the internet requires effective and efficient technology to generate captions automatically for people who are not able to watch the videos. Despite the great progress of video captioning research, particularly on video feature encoding, the language decoder is still largely based on the prevailing RNN decoder such as LSTM, which tends to prefer the frequent word that aligns with the video. In this paper, we propose a boundary-aware hierarchical language decoder for video captioning, which consists of a high-level GRU based language decoder, working as a global (caption-level) language model, and a low-level GRU based language decoder, working as a local (phrase-level) language model. Most importantly, we introduce a binary gate into the low-level GRU language decoder to detect the language boundaries. Together with other advanced components including joint video prediction, shared soft attention, and boundary-aware video encoding, our integrated video captioning framework can discover hierarchical language information and distinguish the subject and the object in a sentence, which are usually confusing during the language generation. Extensive experiments on two widely-used video captioning datasets, MSR-Video-to-Text (MSR-VTT) cite{xu2016msr} and YouTube-to-Text (MSVD) cite{chen2011collecting} show that our method is highly competitive, compared with the state-of-the-art methods.
With the rapid growth of video data and the increasing demands of various applications such as intelligent video search and assistance toward visually-impaired people, video captioning task has received a lot of attention recently in computer vision and natural language processing fields. The state-of-the-art video captioning methods focus more on encoding the temporal information, while lack of effective ways to remove irrelevant temporal information and also neglecting the spatial details. However, the current RNN encoding module in single time order can be influenced by the irrelevant temporal information, especially the irrelevant temporal information is at the beginning of the encoding. In addition, neglecting spatial information will lead to the relationship confusion of the words and detailed loss. Therefore, in this paper, we propose a novel recurrent video encoding method and a novel visual spatial feature for the video captioning task. The recurrent encoding module encodes the video twice with the predicted key frame to avoid the irrelevant temporal information often occurring at the beginning and the end of a video. The novel spatial features represent the spatial information in different regions of a video and enrich the details of a caption. Experiments on two benchmark datasets show superior performance of the proposed method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا