ﻻ يوجد ملخص باللغة العربية
Strong gravitational lenses are a rare and instructive type of astronomical object. Identification has long relied on serendipity, but different strategies -- such as mixed spectroscopy of multiple galaxies along the line of sight, machine learning algorithms, and citizen science -- have been employed to identify these objects as new imaging surveys become available. We report on the comparison between spectroscopic, machine learning, and citizen science identification of galaxy-galaxy lens candidates from independently constructed lens catalogs in the common survey area of the equatorial fields of the GAMA survey. In these, we have the opportunity to compare high-completeness spectroscopic identifications against high-fidelity imaging from the Kilo Degree Survey (KiDS) used for both machine learning and citizen science lens searches. We find that the three methods -- spectroscopy, machine learning, and citizen science -- identify 47, 47, and 13 candidates respectively in the 180 square degrees surveyed. These identifications barely overlap, with only two identified by both citizen science and machine learning. We have traced this discrepancy to inherent differences in the selection functions of each of the three methods, either within their parent samples (i.e. citizen science focuses on low-redshift) or inherent to the method (i.e. machine learning is limited by its training sample and prefers well-separated features, while spectroscopy requires sufficient flux from lensed features to lie within the fiber). These differences manifest as separate samples in estimated Einstein radius, lens stellar mass, and lens redshift. The combined sample implies a lens candidate sky-density $sim0.59$ deg$^{-2}$ and can inform the construction of a training set spanning a wider mass-redshift space.
The Galaxy And Mass Assembly Survey (GAMA) covers five fields with highly complete spectroscopic coverage ($>95$ per cent) to intermediate depths ($r<19.8$ or $i < 19.0$ mag), and collectively spans 250 square degrees of Equatorial or Southern sky. F
We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum f
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of produ
We study the star formation rate (SFR), stellar mass ($M_{star}$) and the gas metallicity (Z) for 4,636 galaxy pairs using the Galaxy And Mass Assembly (GAMA) survey. Our galaxy pairs lie in a redshift range of 0 $<$ $z$ $<$ 0.35, mass range of 7.5 $
We explore the clustering of galaxy groups in the Galaxy and Mass Assembly (GAMA) survey to investigate the dependence of group bias and profile on separation scale and group mass. Due to the inherent uncertainty in estimating the group selection fun