ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Phase for Activated Random Walk on Z

371   0   0.0 ( 0 )
 نشر من قبل Jacob Richey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Activated Random Walk model on $mathbb{Z}$. In this model, each particle performs a continuous-time simple symmetric random walk, and falls asleep at rate $lambda$. A sleeping particle does not move but it is reactivated in the presence of another particle. We show that for any sleep rate $lambda < infty$ if the density $ zeta $ is close enough to $1$ then the system stays active.



قيم البحث

اقرأ أيضاً

149 - Leonardo T. Rolla 2008
* ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then sto pping to jump. When particles of both types occupy the same site, they all become active. This model exhibits phase transition in the sense that for low initial densities the system locally fixates and for high densities it keeps active. Though extensively studied in the physics literature, the matter of giving a mathematical proof of such phase transition remained as an open problem for several years. In this work we identify some variables that are sufficient to characterize fixation and at the same time are stochastically monotone in the models parameters. We employ an explicit graphical representation in order to obtain the monotonicity. With this method we prove that there is a unique phase transition for the one-dimensional finite-range random walk. Joint with V. Sidoravicius. * BROKEN LINE PROCESS * We introduce the broken line process and derive some of its properties. Its discrete version is presented first and a natural generalization to the continuum is then proposed and studied. The broken lines are related to the Young diagram and the Hammersley process and are useful for computing last passage percolation values and finding maximal oriented paths. For a class of passage time distributions there is a family of boundary conditions that make the process stationary and reversible. One application is a simple proof of the explicit law of large numbers for last passage percolation with exponential and geometric distributions. Joint with V. Sidoravicius, D. Surgailis, and M. E. Vares.
200 - Leonardo T. Rolla 2019
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is t hat of Activated Random Walks. Long-range effects intrinsic to the conservative dynamics and lack of a simple algebraic structure cause standard tools and techniques to break down. This makes the mathematical study of this model remarkably challenging. Yet, some exciting progress has been made in the last ten years, with the development of a framework of tools and methods which is finally becoming more structured. In these lecture notes we present the existing results and reproduce the techniques developed so far.
We consider Activated Random Walks on $Z$ with totally asymmetric jumps and critical particle density, with different time scales for the progressive release of particles and the dissipation dynamics. We show that the cumulative flow of particles thr ough the origin rescales to a pure-jump self-similar process which we describe explicitly.
In the randomly-oriented Manhattan lattice, every line in $mathbb{Z}^d$ is assigned a uniform random direction. We consider the directed graph whose vertex set is $mathbb{Z}^d$ and whose edges connect nearest neighbours, but only in the direction fix ed by the line orientations. Random walk on this directed graph chooses uniformly from the $d$ legal neighbours at each step. We prove that this walk is superdiffusive in two and three dimensions. The model is diffusive in four and more dimensions.
201 - Yuki Chino , Akira Sakai 2015
Following similar analysis to that in Lacoin (PTRF 159, 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on the d-dimensional integer lattice is almost surely a constant, which does not depend o n the location of the reference point. We provide its upper and lower bounds that are valid for all dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا