ﻻ يوجد ملخص باللغة العربية
Forward channel state information (CSI) often plays a vital role in scheduling and capacity-approaching transmission optimization for massive multiple-input multiple-output (MIMO) communication systems. In frequency division duplex (FDD) massive MIMO systems, forwardlink CSI reconstruction at the transmitter relies critically on CSI feedback from receiving nodes and must carefully weigh the tradeoff between reconstruction accuracy and feedback bandwidth. Recent studies on the use of recurrent neural networks (RNNs) have demonstrated strong promises, though the cost of computation and memory remains high, for massive MIMO deployment. In this work, we exploit channel coherence in time to substantially improve the feedback efficiency. Using a Markovian model, we develop a deep convolutional neural network (CNN)-based framework MarkovNet to differentially encode forward CSI in time to effectively improve reconstruction accuracy. Furthermore, we explore important physical insights, including spherical normalization of input data and convolutional layers for feedback compression. We demonstrate substantial performance improvement and complexity reduction over the RNN-based work by our proposed MarkovNet to recover forward CSI estimates accurately. We explore additional practical consideration in feedback quantization, and show that MarkovNet outperforms RNN-based CSI estimation networks at a fraction of the computational cost.
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division d
Accurate channel state information (CSI) feedback plays a vital role in improving the performance gain of massive multiple-input multiple-output (m-MIMO) systems, where the dilemma is excessive CSI overhead versus limited feedback bandwith. By consid
Channel state information (CSI) feedback is critical for frequency division duplex (FDD) massive multi-input multi-output (MIMO) systems. Most conventional algorithms are based on compressive sensing (CS) and are highly dependent on the level of chan
In this paper, an efficient massive multiple-input multiple-output (MIMO) detector is proposed by employing a deep neural network (DNN). Specifically, we first unfold an existing iterative detection algorithm into the DNN structure, such that the det
In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO), deep learning (DL)-based superimposed channel state information (CSI) feedback has presented promising performance. However, it is still facing many challenges, such