ﻻ يوجد ملخص باللغة العربية
Together with the rapid development of the Internet of Things (IoT), human activity recognition (HAR) using wearable Inertial Measurement Units (IMUs) becomes a promising technology for many research areas. Recently, deep learning-based methods pave a new way of understanding and performing analysis of the complex data in the HAR system. However, the performance of these methods is mostly based on the quality and quantity of the collected data. In this paper, we innovatively propose to build a large database based on virtual IMUs and then address technical issues by introducing a multiple-domain deep learning framework consisting of three technical parts. In the first part, we propose to learn the single-frame human activity from the noisy IMU data with hybrid convolutional neural networks (CNNs) in the semi-supervised form. For the second part, the extracted data features are fused according to the principle of uncertainty-aware consistency, which reduces the uncertainty by weighting the importance of the features. The transfer learning is performed in the last part based on the newly released Archive of Motion Capture as Surface Shapes (AMASS) dataset, containing abundant synthetic human poses, which enhances the variety and diversity of the training dataset and is beneficial for the process of training and feature transfer in the proposed method. The efficiency and effectiveness of the proposed method have been demonstrated in the real deep inertial poser (DIP) dataset. The experimental results show that the proposed methods can surprisingly converge within a few iterations and outperform all competing methods.
Sensor-based human activity recognition (HAR) is now a research hotspot in multiple application areas. With the rise of smart wearable devices equipped with inertial measurement units (IMUs), researchers begin to utilize IMU data for HAR. By employin
Unsupervised user adaptation aligns the feature distributions of the data from training users and the new user, so a well-trained wearable human activity recognition (WHAR) model can be well adapted to the new user. With the development of wearable s
Human Activity Recognition from body-worn sensor data poses an inherent challenge in capturing spatial and temporal dependencies of time-series signals. In this regard, the existing recurrent or convolutional or their hybrid models for activity recog
Wearables are fundamental to improving our understanding of human activities, especially for an increasing number of healthcare applications from rehabilitation to fine-grained gait analysis. Although our collective know-how to solve Human Activity R
Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such