ﻻ يوجد ملخص باللغة العربية
Given an inhomogeneous chain embedded in a noisy image, we consider the conditions under which such an embedded chain is detectable. Many applications, such as detecting moving objects, detecting ship wakes, can be abstracted as the detection on the existence of chains. In this work, we provide the detection algorithm with low order of computation complexity to detect the chain and the optimal theoretical detectability regarding SNR (signal to noise ratio) under the normal distribution model. Specifically, we derive an analytical threshold that specifies what is detectable. We design a longest significant chain detection algorithm, with computation complexity in the order of $O(nlog n)$. We also prove that our proposed algorithm is asymptotically powerful, which means, as the dimension $n rightarrow infty$, the probability of false detection vanishes. We further provide some simulated examples and a real data example, which validate our theory.
We develop an unsupervised, nonparametric, and scalable statistical learning method for detection of unknown objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to dete
Optimal linear prediction (also known as kriging) of a random field ${Z(x)}_{xinmathcal{X}}$ indexed by a compact metric space $(mathcal{X},d_{mathcal{X}})$ can be obtained if the mean value function $mcolonmathcal{X}tomathbb{R}$ and the covariance f
In this work we introduce the concept of Bures-Wasserstein barycenter $Q_*$, that is essentially a Frechet mean of some distribution $mathbb{P}$ supported on a subspace of positive semi-definite Hermitian operators $mathbb{H}_{+}(d)$. We allow a bary
We consider testing statistical hypotheses about densities of signals in deconvolution models. A new approach to this problem is proposed. We constructed score tests for the deconvolution with the known noise density and efficient score tests for the
Empirical likelihood approach is one of non-parametric statistical methods, which is applied to the hypothesis testing or construction of confidence regions for pivotal unknown quantities. This method has been applied to the case of independent ident