ﻻ يوجد ملخص باللغة العربية
We propose a fast and robust quantum state transfer protocol employing a Su-Schrieffer-Heeger chain, where the interchain couplings vary in time. Based on simple considerations around the terms involved in the definition of the adiabatic invariant, we construct an exponential time-driving function that successfully takes advantage of resonant effects to speed up the transfer process. Using optimal control theory, we confirm that the proposed time-driving function is close to optimal. To unravel the crucial aspects of our construction, we proceed to a comparison with two other protocols. One where the underlying Su-Schrieffer-Heeger chain is adiabatically time-driven and another where the underlying chain is topologically trivial and resonant effects are at work. By numerically investigating the resilience of each protocol to static noise, we highlight the robustness of the exponential driving.
Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum information processing. Here we present an experimentally feasible mechanism for realizing robust QST via topologically protected edge states in superconducting qu
We investigate the quantum state transfer in a chain of particles satisfying q-deformed oscillators algebra. This general algebraic setting includes the spin chain and the bosonic chain as limiting cases. We study conditions for perfect state transfe
We show that it is possible to successfully, rapidly and robustly transfer a topological vibrational edge mode across a time-varying mechanical chain. The stiffness values of the springs of the chain are arranged in an alternating staggered way, such
Transferring quantum information between two qubits is a basic requirement for many applications in quantum communication and quantum information processing. In the iterative quantum state transfer (IQST) proposed by D. Burgarth et al. [Phys. Rev. A
The transfer of quantum states has played an important role in quantum information processing. In fact, transfer of quantum states from point $A$ to $B$ with unit fidelity is very important for us and we focus on this case. In recent years, in repres