ﻻ يوجد ملخص باللغة العربية
Graph models, like other machine learning models, have implicit and explicit biases built-in, which often impact performance in nontrivial ways. The models faithfulness is often measured by comparing the newly generated graph against the source graph using any number or combination of graph properties. Differences in the size or topology of the generated graph therefore indicate a loss in the model. Yet, in many systems, errors encoded in loss functions are subtle and not well understood. In the present work, we introduce the Infinity Mirror test for analyzing the robustness of graph models. This straightforward stress test works by repeatedly fitting a model to its own outputs. A hypothetically perfect graph model would have no deviation from the source graph; however, the models implicit biases and assumptions are exaggerated by the Infinity Mirror test, exposing potential issues that were previously obscured. Through an analysis of thousands of experiments on synthetic and real-world graphs, we show that several conventional graph models degenerate in exciting and informative ways. We believe that the observed degenerative patterns are clues to the future development of better graph models.
Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Dete
Do algorithms for drawing graphs pass the Turing Test? That is, are their outputs indistinguishable from graphs drawn by humans? We address this question through a human-centred experiment, focusing on `small graphs, of a size for which it would be r
Graph models have long been used in lieu of real data which can be expensive and hard to come by. A common class of models constructs a matrix of probabilities, and samples an adjacency matrix by flipping a weighted coin for each entry. Examples incl
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today ab
Graph clustering is an important technique to understand the relationships between the vertices in a big graph. In this paper, we propose a novel random-walk-based graph clustering method. The proposed method restricts the reach of the walking agent