ﻻ يوجد ملخص باللغة العربية
Thermoelectric measurements have the potential to uncover the density of states of low-dimensional materials. Here, we present the anomalous thermoelectric behaviour of mono-layer graphene-nanowire (NW) heterostructures, showing large oscillations as a function of doping concentration. Our devices consist of InAs NW and graphene vertical heterostructures, which are electrically isolated by thin ($sim$ 10nm) hexagonal boron nitride (hBN) layers. In contrast to conventional thermoelectric measurements, where a heater is placed on one side of a sample, we use the InAs NW (diameter $sim 50$ nm) as a local heater placed in the middle of the graphene channel. We measure the thermoelectric voltage induced in graphene due to Joule heating in the NW as a function of temperature (1.5K - 50K) and carrier concentration. The thermoelectric voltage in bilayer graphene (BLG)- NW heterostructures shows sign change around the Dirac point, as predicted by Motts formula. In contrast, the thermoelectric voltage measured across monolayer graphene (MLG)-NW heterostructures shows anomalous large-amplitude oscillations around the Dirac point, not seen in the Mott response derived from the electrical conductivity measured on the same device. The anomalous oscillations are a signature of the modified density of states in MLG by the electrostatic potential of the NW, which is much weaker in the NW-BLG devices. Thermal calculations of the heterostructure stack show that the temperature gradient is dominant in the graphene region underneath the NW, and thus sensitive to the modified density of states resulting in anomalous oscillations in the thermoelectric voltage. Furthermore, with the application of a magnetic field, we detect modifications in the density of states due to the formation of Landau levels in both MLG and BLG.
Correlated charge inhomogeneity breaks the electron-hole symmetry in two-dimensional (2D) bilayer heterostructures which is responsible for non-zero drag appearing at the charge neutrality point. Here we report Coulomb drag in novel drag systems cons
We study quantum point contacts in two-dimensional topological insulators by means of quantum transport simulations for InAs/GaSb heterostructures and HgTe/(Hg,Cd)Te quantum wells. In InAs/GaSb, the density of edge states shows an oscillatory decay a
We observe the magnetic oscillation of electric conductance in the two-dimensional InAs/GaSb quantum spin Hall insulator. Its insulating bulk origin is unambiguously demonstrated by the antiphase oscillations of the conductance and the resistance. Ch
We use first-principle density functional theory (DFT) to study the transport properties of single and double barrier heterostructures realized by stacking multilayer h-BN or BC$_{2}$N, and graphene films between graphite leads. The heterostructures
Using a van der Waals vertical heterostructure consisting of monolayer graphene, monolayer hBN and NbSe$_2$, we have performed local characterization of induced correlated states in different configurations. At a temperature of 4.6 K, we have shown t