ﻻ يوجد ملخص باللغة العربية
Public Key Infrastructures (PKIs) with their trusted Certificate Authorities (CAs) provide the trust backbone for the Internet: CAs sign certificates which prove the identity of servers, applications, or users. To be trusted by operating systems and browsers, a CA has to undergo lengthy and costly validation processes. Alternatively, trusted CAs can cross-sign other CAs to extend their trust to them. In this paper, we systematically analyze the present and past state of cross-signing in the Web PKI. Our dataset (derived from passive TLS monitors and public CT logs) encompasses more than 7 years and 225 million certificates with 9.3 billion trust paths. We show benefits and risks of cross-signing. We discuss the difficulty of revoking trusted CA certificates where, worrisome, cross-signing can result in valid trust paths to remain after revocation; a problem for non-browser software that often blindly trusts all CA certificates and ignores revocations. However, cross-signing also enables fast bootstrapping of new CAs, e.g., Lets Encrypt, and achieves a non-disruptive user experience by providing backward compatibility. In this paper, we propose new rules and guidance for cross-signing to preserve its positive potential while mitigating its risks.
An important problem of modern cryptography concerns secret public-key computations in algebraic structures. We construct homomorphic cryptosystems being (secret) epimorphisms f:G --> H, where G, H are (publically known) groups and H is finite. A let
This paper gives the definitions of an anomalous super-increasing sequence and an anomalous subset sum separately, proves the two properties of an anomalous super-increasing sequence, and proposes the REESSE2+ public-key encryption scheme which inclu
In this paper, the authors give the definitions of a coprime sequence and a lever function, and describe the five algorithms and six characteristics of a prototypal public key cryptosystem which is used for encryption and signature, and based on thre
This paper gives the definition and property of a bit-pair shadow, and devises the three algorithms of a public key cryptoscheme called JUOAN that is based on a multivariate permutation problem and an anomalous subset product problem to which no sube
This article discusses the security of McEliece-like encryption schemes using subspace subcodes of Reed-Solomon codes, i.e. subcodes of Reed-Solomon codes over $mathbb{F}_{q^m}$ whose entries lie in a fixed collection of $mathbb{F}_q$-subspaces of $m